

THE ASIAN BULLETIN OF BIG DATA MANAGMENT

Vol. 4. Issue 1 (2024)

https://doi.org/ 10.62019/abbdm.v4i1.107

107

Code Smell Detection and Software Refactoring Research: A

Systematic Literature Review the Transformative
Israr Ali, Sajjad Hussain Rizvi, Syed Hasan Adil, *Abdul Ahad Abro
Chronicle Abstract

Article history

Received: February 12, 2024

Received in the revised format: Feb 24,

2024

Accepted: Feb 27, 2024

Available online: Feb 29, 2024

Today we are experiencing rapid enhancements in software systems

and their development. The software industry's demand for tools and

techniques for software development, especially automatic and less

time-consuming, is increasing daily. Software refactoring and code

smell detection are now expanded from code-level changes to the

architecture, model, and requirements restructuring. We are moving

from an object-oriented paradigm towards cloud computing, web

development and mobile application development and so much

more. Therefore, code smell and refactoring techniques are talk of the

town in various research communities in their objectives. In this paper

we will study the existing tools and techniques, research progress by

doing a systematic literature review in the field of code smell detection

and software refactoring’s. We will also classify the existing research

techniques, identify the trends in code smell detection and refactoring

and try to highlight the gaps in the area for researchers.

Israr Ali, Sajjad Hussain Rizvi, Syed

Hasan Adil and Abdul Ahad Abro

are currently affiliated with the

Department of Computer Science

Iqra University Karachi, Pakistan.

Karachi, Pakistan

Email: Israr.ali@iqra.edu.pk

Email: dr.sajjad@szabist.pk

Email: hasan.adil@iqra.edu.pk

Email: abdul.ahad@iqra.edu.pk

Corresponding Author*

Keywords: code smell detection, software refactoring, literature review.
 © 2024 Asian Academy of Business and social science research Ltd Pakistan All rights reserved

INTRODUCTION

A predictive model is a black box and when we present a feature set of any record it will

automatically register a class label. We can describe a predictive model as a problem

related to mathematics of finding out target function F, target function F will map all

features of set say S1 in a dataset (DS) to one class label. We can say that target of these

kind of models is to discover optimal F. There are four basic parts in a predictive model

used in these types of studies.

Datasets datasets are the basic and most important component of predictive model is

Dataset. Dataset is very important as they have a large impact of model overall

performance. We can use different types of datasets when designing predictive model

for software engineering. Source Codes, bug reports, and SRS can be used for defect

prediction, bug classification and requirement classification.

Features: Features are an important component in predictive model especially in training

phase. A good feature set will be able to allow models for prediction to learn efficiently

the patterns (and analyses them efficiently) in datasets.

Model Algorithm: We can use different types of algorithms to construct our predictive

model, recently several deep learning-based algorithms are used to develop predictive

models, such as CNN and RNN based networks Abro et al. (2020).

mailto:Israr.ali@iqra.edu.pk
mailto:dr.sajjad@szabist.pk
mailto:hasan.adil@iqra.edu.pk
mailto:abdul.ahad@iqra.edu.pk

The Asian Bulletin of Big Data Management Data Science 4(1),107-120

Performance Measures of Model: most common performance measures like precision,

recall, F score, AUC and accuracy have been used in software engineering studies Abro

et al. (2021). Predictive models are now extremely popular in research scholars especially

in the domain of SE. They can be built by using different types of datasets of SRE (Software

Requirement Engineering), APIs, BRS (Bug Reporting Systems) and run time data of Open-

Source Software. The output of

Figure 1.
Research domains in the field of software engineering

These predictive models are the unique features found in the data. Different predictive

models have been developed including Code smell detection Abro et al. (2023), Issues

in APIs and their classification Zhang et al. (2016) and prediction of defects in software’s

Alomar et al. (2019). We have made studies to find out primary studies done in Research

domains in the field of software engineering. The results are shown in Figure 1.

As we can see the major publication are in the domain of Software Testing and

Debugging. The reason could be this domain has more predictive model applicable

tasks like software defect prediction, software code smell detection and software bug

report maintenance. We also studied the specific topics where most of the predictive

model related papers are found. Table 1 describes the ranking of these specific topics.

Table 1.

Predictive models

Table 1: Ranking of SE topics in last decade automated by using Predictive models Lin et

al. (2019). Software Refactoring is a technique or set of techniques that is used by

experienced Software Engineers to change the internal structure of code to improve the

overall quality aspect of the Software. The Main factor is that the changes does not affect

the External Structure of the Software. This Process very much depends on developer

Code Smell Detection and Software Refactoring Ali, I et al., (2024)

109

expertise and experience in this regard. Automated Refactoring can be extremely

helpful for Software Developers especially new ones with low experience. Machine

Learning has been used in last decade to accomplish this task and recently researchers

are trying to achieve this task by using different deep learning methods. In this research

we will first see the weather deep learning can be used effectively to automate this

process and then we will propose a novel deep learning based predictive model to

achieve this goal. Software Refactoring task are presented here in Table 2, Table 3 and

Table 4 as Class, Methods and Variable Levels Tantithamthavorn et al. (2016).

Table 2.

Class level Software Code Refactoring

Table 3.

Method level Software Code Refactoring

The Asian Bulletin of Big Data Management Data Science 4(1),107-120

Table 4.

Variable Level Refactoring

It is long been a fact accepted that Software refactoring is an essential ingredient in

good quality software developer tools, but how to do Refactoring and what steps are

needed and where to apply these techniques is a problem specially for new developers

and Software development environments that want to automate this process.

LITERATURE REVIEW

Code Smell detection and code refactoring has always been done in informal ways by

software developers and it hugely depends on their experience and expertise. The term

‘refactoring’ was first used in 1990 Mens et al. (2004) Palomba et al. (2018). In Poon et al.

(2006), published their survey paper about software refactoring in 2004 and emphasized

the importance of formalism and process methods with tools to apply refactoring in

better ways. In Mens et al. (2004), published a survey in 2004 about code smell detection

and concluded that impact of code smell detection remains far from fully

understandings and needs attention and knowledge of some techniques are still not

understood properly. In Zhang et al. (2019) performed a machine learning and search-

based case study on software refactoring and concluded that automated approach

can outperform manual refactoring techniques.

Additionally, they used ANN and GA to choose the refactoring solution. The systematic

literature review and provided an overview of code smell detection approaches. They

concluded that Extract Class and Move method are two most common refactoring

technique researchers have automated. In this research they classified the tools and

techniques of refactoring based on their detection method. Abro et al. (2021) selected

four code smells (Long Method, Feature Envy, Large Class, and Data Class) with 16

different ML algorithms. Their result suggested that J48 and random forest were best in

terms of performance and SVM was poor. It performed a review on code smell detection

tools and type of smell they were able to identify. They identified that ML is not very much

used in detection of code smell and other approaches are more frequently used. The

research on refactoring focusing on object-oriented programming. Authors build a

predictive model over OOP systems and used machine learning classifiers and achieved

90% accuracy. The search-based algorithms applied on code refactoring’s and

Code Smell Detection and Software Refactoring Ali, I et al., (2024)

111

concluded that genetic algorithms are most used in this regard. Singh highlighted the

tools and datasets used in code smell and refactoring’s and concluded that God Class

and feature envy are most used by researchers in automated detection. Literature

review on impact of code smell detection on SDLC and identified that Human based

code smell detection is not reliable and developer expertise significantly impact SDLC

while applying code smell detection techniques. The literature review and focused on

prevention rather than fixing code after code writing (inspection). The Machine learning

based literature review in 2019 and suggested that source code base approaches are

more popular rather than modular based approaches.

ML based approaches and his results shows that God classes and Functional

Decomposition are most used code smells and Decision Tree and SVM are mostly used

by researchers. It used 10 different ML algorithm on 5 different datasets to investigate the

algorithms performance and proposed a new refactoring approach and proved that his

approach outperformed other approaches. In literature review, 16 different ML

algorithms for code smell detection and concluded that J48 and Random Forest

obtained the best result while SVM produced the worst performance. Further, studied 6

different ML algorithms for predicting refactoring and suggested that Random Forest are

best for prediction and process and ownership matrices are best suitable for creation for

better model.

Moreover, worked on feature envy detection using deep learning and ANN and

proposed a new approach for smell detection. Lastly the proposed a deep learning base

approach to detect code smells this time for four different code smells. Deep Learning is

getting popular in code smell detection techniques suggestions and it can be verified

that the interest in this direction is increasing.

Table 5.

Number of results against code smell on https://scholar.google.com/

Heuristics based approaches

An approach of solving any problem that used shortcuts to produce solution and that

solution may or may not be optimal is called a heuristics-based approach. Research

Studies in the domain of code smell detection are done by using heuristics-based

approaches as given in table 6. These are tools easily available on internet to download

install as plugins.

Keyword Year Results Count

"code smell", "deep learning" 2015 1 result

"code smell", "deep learning" 2016 3 results

"code smell", "deep learning" 2017 5 results

"code smell", "deep learning" 2018 21 results

"code smell", "deep learning" 2019 70 results

"code smell", "deep learning" 2020 87 results

"code smell", "deep learning" 2021 180 results

The Asian Bulletin of Big Data Management Data Science 4(1),107-120

Table 6.

Heuristics based approaches

ML / DL -based approaches

Machine learning based tools for code smell detection are also available on internet to

be used as plugin in IDE’s. Some of them are given in the table 7.

Table 7.
ML / DL -based approaches

REVIEW METHODOLOGY

In this section we will discuss the process we will follow for conducting this review. The

review approach and process followed by us is given in figure 2 below. This process is

basically divided into three phases. First planning and then conducting and in the end

reporting the result. In the first stage the datasets were identified from where we can find

papers, we also formed the research questions (RQs). In the next phase we shortlisted the

papers and irreverent papers were excluded from our research. At the end in the final

phase all result found were documented and research questions were answered.

Planning Phase: Planning phase was divided into two phase first is paper searching and

second is Research Question preparation.

Paper Searching: We started our search by visiting and exploring different online

databases, journals, conferences and internet links. This search was divided into three

steps. In the first step all online databases like google scholars, IEEE Explorer, ACM Digital

Code Smell Detection and Software Refactoring Ali, I et al., (2024)

113

Library and Springer were used. The search string for this research with search terms was

as follows

Figure 2.

Review Methodology

(Code refactoring or refactoring techniques) and (code smell or code smell detection)

and (software Maintenance matrices) or (refactoring tools)

The second step was to filter only well-known journals and conference papers and

selection of most recent year’s publications. Research Questions

While conduction of paper search and literature review so many research questions were

raised but some of them were short listed based on review. Table 8 below provides the

research questions for the current study

Table 8.

Research Questions

RQ1 What are the different code smells that are already detected by studies?

RQ2 What are the different code smells that are not yet detected by studies?

RQ3 What are the different refactoring techniques that are already used by studies?

RQ4 What are the different refactoring techniques that are not used by studies?

RQ5

RQ6

Which refactoring technique should be used for a specific code smell?

What are the different software metrics used in the detection studies?

Conducting Phase: In the next phase we are discussing about the conducting process of

review. First, we selected the paper by using our inclusion criteria and then filter out the

papers by using our exclusion criteria.

Inclusion Criteria: All duplicate and not relevant papers were not included, we focused

on our RQs and then set our inclusion criteria.

• Papers in which in refactoring technique was identified or discussed.

• Papers in which any smell was identified or detected.

• Papers in which software maintenance quality matrices were used to show the

impact of refactoring.

• Papers where refactoring was suggested using machine learning.

• Papers where refactoring was suggested using deep learning.

Exclusion Criteria: we focused on our RQs and then set our exclusion criteria.

• Papers in which code smell and refactoring was not discussed.

The Asian Bulletin of Big Data Management Data Science 4(1),107-120

• Papers in which our RQs are not relevant.

• Papers which are before 2001

• Papers not providing and experimenting results.

Distribution of paper

We divided our collected research papers into three different categories. The sources of

our papers were well known journals, recognized conferences and book chapters. The

category wise distribution of research papers is depicted in figure 3

Figure 3.

Paper distribution as per publications

RESULTS

The selected research papers were analyzed based on all RQs and results are given

below

RQ1: What are the different code smells that are already detected by studies?

Code smells are the indicators that there is a refactoring opportunity in code. Some of

the most detected code smells are listed in table 9 with the number of research papers

count.

Table 9.

No Code smell Count No Code smell

Count

1 Feature envy 22 16 Speculative generality 5

2 Data class 19 17 Schizophrenic

class

 4

3 Intensive coupling 17 18 Divergent change 4

4 Lazy class 11 19 Long method 4

5 Long parameter

list

11 20 Duplicate code 3

6 Message chain 10 21 Inappropriate intimacy 3

7 Brain method 10 22 Complex 3

8 Large class 9 23 Type checking 3

9 Refused bequest 8 24 Switch statements 3

10 Spaghetti Code 7 25 Class data private 3

11 Blob 6 26 Shotgun survey 2

12 Parallel inheritance 6 27 Middle man 2

Code Smell Detection and Software Refactoring Ali, I et al., (2024)

115

13 Temporary

field

5 28 Brain class 2

14 Data clumps 5 29 Class hierarchy problem 2

15 Functional decomposition 5 30 Nested try statements 2

 Table 9 code smell detected

RQ2: What are the different code smells that are not yet detected by studies?

By going through stablished code smells we found some of the smells that are not yet

detected by any tool or technique as per our understandings. All these smells are listed

in table 10.

Table 10.

Code Smell Name

Primitive Obsession

Alternative Classes with Different Interfaces

Comments

Dead Code

Incomplete Library Class

Middleman

Cyclomatic complexity

Down casting

God Line

God Class

Table 10 code smell not detected

RQ3: What are the different refactoring techniques that were investigated by studies?

Refactoring is code changes that improves code or product quality but behavior remains

same. It the solution of code smells and it is a different technique then rewriting the code

from scratch. Some of the most used refactoring techniques that are used in research

papers are listed here in table 10.

Table 11.

Refactoring techniques investigated

No Refactoring Count No Refactoring Count technique technique

1 Extract class 9 19 Move method 2

2 Extract method 8 20 Consolidate conditional expression 2

3 Form template method 5 21 state/strategy 2

4 Introduce parameter object 5 22 Collapse hierarchy 2

5 Extract superclass 4 23 Introduce null object 2

6 Extract subclass 4 24 Remove

parameter

2

7 Move field 3 25 Inline method 2

8 Inline temp 3 26 Replace delegation with Inheritance 2

9 Introduce assertion 3 27 Push down

field

2

10 Encapsulate collection 3 28 Remove setting method 1

11 Push down method 3 29 Replace temp with query 1

12 Pull up field 3 30 Replace method with method object 1

13 Pull up method 3 31 Encapsulate

field

1

The Asian Bulletin of Big Data Management Data Science 4(1),107-120

14 Preserve whole object 3 32 Add parameter 1

15 Duplicate observed data 3 33 Replace type code with 1

16 Hide delegate 2 34 Inline class 1

17 Separate query from modifier 2 35 Extract interface 1

18 Replace data value with object 2 36 Rename method 1

RQ4. What are the different refactoring techniques that are not used by studies?

By going through stablished refactoring techniques we found some of the techniques

that are not yet solved or discussed by any tool or technique as per our understandings.

All these techniques are listed in table 12.

Table 12.

Refactoring techniques not investigated
No Refactoring technique No Refactoring technique

1 Bi Association to Uni directional 15 Replace Array with Object

2 Change Reference to Value 16 Conditional with Polymorphism

3 Change Unidirectional

Association to

Bidirectional

17 Replace Constructor with Factory

Method

4 Change Value to Reference 18 Replace Error Code with Exception

5 Duplicate Conditional Fragments 19 Replace Exception with Test

6 Decompose Conditional 20 Replace Magic Number with Constant

7 Hide Method 21 Replace Nested Conditional

8 Introduce Foreign Method 22 Replace Parameter with Methods

9 Introduce Local Extension 23 Replace Parameter with Method Call

10 Parameterize Method 24 Replace Subclass with Fields

11 Preserve Whole Object 25 Self-Encapsulate Field

12 Pull Up Constructor Body 26 Separate Query from Modifier

13 Remove Control Flag 27 Substitute Algorithm

14 Remove Middle Man

RQ5: Which refactoring technique should be used for a specific code smell?

By going through stablished refactoring techniques we found some code smells and

some of the techniques that can be used to solve code smells. All these techniques are

listed in table 12.

Table 13.

No Code Smells Refactoring techniques Name

Bloaters

1 Long Method Extract Method

Replace Method with Method

Object.

Replace Temp with Query,

Introduce Parameter Object or

Preserve Whole Object

Decompose Conditional

2 Large Class Extract Class

Extract Subclass

Extract Interface

Duplicate Observed Data

Code Smell Detection and Software Refactoring Ali, I et al., (2024)

117

3 Primitive Obsession Replace Data Value with

Object.

Preserve Whole Object.

Introduce Parameter Object

Replace Type Code with

State/Strategy.

Replace Type Code with

Subclasses

Replace Type Code with Class

Replace Array with Object.

4 Long

Parameter List

Replace Parameter with

Method Call.

Preserve Whole Object.

Introduce Parameter Object.

5 Data Clumps Extract Class

Introduce Parameter Object

Table 14.

Code smell with suitable refactoring techniques
 Preserve Whole Object

Object-Orientation Abusers

6 Alternative

Classes with

Different

Interfaces

Extract Superclass

Add Parameter

Parameterize Method

Move Method

Rename Methods

7 Refused Bequest Replace Inheritance with Delegation.

Extract Superclass

8 Switch

Statements

Introduce Null Object.

Replace Parameter with Explicit Methods

Replace Conditional with Polymorphism.

Replace Type Code with State/Strategy.

Replace Type Code with Subclasses

Move Method.

Extract Method

9 Temporary

Field

Introduce Null Object

Replace Method with Method Object.

Extract Class

Change Preventers

10 Divergent Change Extract Class.

Extract Superclass

and Extract Subclass

11 Parallel

Inheritance

Hierarchies

Move Field

Move Method

12 Shotgun Surgery Move Field

Move Method

 Inline Class

Dispensable

13 Comments Introduce Assertion.

Rename Method

Extract Method.

Extract Variable

14 Duplicate Code Extract Method

Pull Up Field

Pull Up Constructor Body.

Form Template Method.

The Asian Bulletin of Big Data Management Data Science 4(1),107-120

Software metrics helps us understand the software code properties from different angles.

Figure 4 given below displays the matrices used in different research paper especially for

code smell and refactoring impact on code.

CONCLUSIONS

In this review study we have investigated different code smells and refactoring

techniques and software metrics. Total 80 papers were selected for this purpose, 6 RQs

were established and answered. Findings of this study are given below. For refactoring

techniques, Move method, Extract Class/ Method are automated by most researchers.

For code smell detection Long method code, Feature Envy are detected by most

researchers. Cohesion, Coupling and Complexity software metrics are mostly used by

researchers to prove their technique impact.

Figure 4.

Software Metrics used in research papers

 Substitute Algorithm.

Extract Superclass

Extract Class

15 Data Class Encapsulate Field

Encapsulate Collection

Move Method and Extract Method

Remove Setting Method and Hide Method

16 Dead Code Remove Parameter.

Inline Class or Collapse Hierarchy

Lazy Class Collapse Hierarchy

 Inline Class

17 Speculative Generality Inline Method

Remove Parameter.

Collapse Hierarchy.

Couplers

18 Feature Envy Move Method.

Extract Method

19 Inappropriate Intimacy Move Method and Move Field

Extract Class and Hide Delegate

Change Bidirectional Association to Unidirectional.

Replace Delegation with Inheritance.

20 Incomplete

Library Class

Introduce Local Extension.

Introduce Foreign Method.

21 Message Chains Hide Delegate.

Move Method.

Extract Method

22 Middle Man Remove Middle Man

Code Smell Detection and Software Refactoring Ali, I et al., (2024)

119

FUTURE WORK

We think that following are the areas where we can further work andprogress.s

Consequently, a thorough examination can be carried out to extrapolate the outcomes

to all projects utilizing object-oriented languages, such as C, C++, C#, etc.

To lessen the effort of the maintenance phase, research can be done on class

prioritization and determining the best refactoring order.

The effects of restructuring on various software qualities, such as internal and external

quality features, can be examined through a systematic review process.

It is possible to create a deep learning-based, free, open-source solution for developers

that addresses code smell and software refactoring.

DECLARATIONS

Acknowledgement: We appreciate the generous support from all the supervisors and their

different affiliations.

Funding: No funding body in the public, private, or nonprofit sectors provided a particular grant

for this research.

Availability of data and material: In the approach, the data sources for the variables are

stated.

Authors' contributions: Each author participated equally to the creation of this work.

Conflicts of Interests: The authors declare no conflict of interest.

Consent to Participate: Yes

Consent for publication and Ethical approval: Because this study does not include human or

animal data, ethical approval is not required for publication. All authors have given their

consent.

REFERENCES

Abro, A. A., Khan, A. A., Talpur, M. S. H., Kayijuka, I., & Yaşar, E. (2021). Machine learning classifiers:

a brief primer. University of Sindh Journal of Information and Communication Technology,

5(2), 63-68.

Abro, A. A., Siddique, W. A., Talpur, M. S. H., Jumani, A. K., & Yaşar, E. (2023). A combined approach

of base and meta learners for hybrid system. Turkish Journal of Engineering, 7(1), 25-32.

Alomar, E. A., Mkaouer, M. W., Ouni, A., & Kessentini, M. (2019). Do design metrics capture

developers perception of quality and empirical study on self-affirmed refactoring

activities. arXiv preprint arXiv:1907.04797.

Tantithamthavorn, C., McIntosh, S., Hassan, A. E., & Matsumoto, K. (2016, May). Automated

parameter optimization of classification techniques for defect prediction models. In

Proceedings of the 38th international conference on software engineering (pp. 321-332).

Abro, A. A. (2020). Identifying the machine learning techniques for classification of target datasets.

Computer Science-Artificial Intelligence.

Zhang, J., Wang, Z., Zhang, L., Hao, D., Zang, L., Cheng, S., & Zhang, L. (2016, July). Predictive

mutation testing. In Proceedings of the 25th International Symposium on Software Testing

and Analysis (pp. 342-353).

Lin, B., Zampetti, F., Bavota, G., Di Penta, M., & Lanza, M. (2019, May). Pattern-based mining of

opinions in Q&A websites. In 2019 IEEE/ACM 41st International Conference on Software

Engineering (ICSE) (pp. 548-559). IEEE.

The Asian Bulletin of Big Data Management Data Science 4(1),107-120

Mens, T., & Tourwé, T. (2004). A survey of software refactoring. IEEE Transactions on software

engineering, 30(2), 126-139.

Palomba, F., Tamburri, D. A., Fontana, F. A., Oliveto, R., Zaidman, A., & Serebrenik, A. (2018).

Beyond technical aspects: How do community smells influence the intensity of code

smells?. IEEE transactions on software engineering, 47(1), 108-129.

Poon, C. S., & Chan, D. (2006). Feasible use of recycled concrete aggregates and crushed clay

brick as unbound road sub-base. Construction and building materials, 20(8), 578-585.

Mens, T., & Tourwé, T. (2004). A survey of software refactoring. IEEE Transactions on software

engineering, 30(2), 126-139.

Zhang, X., Xu, Y., Lin, Q., Qiao, B., Zhang, H., Dang, Y., ... & Zhang, D. (2019, August). Robust log-

based anomaly detection on unstable log data. In Proceedings of the 2019 27th ACM

Joint Meeting on European Software Engineering Conference and Symposium on the

Foundations of Software Engineering (pp. 807-817).

Abro, A. A., Talpur, M. S. H., Jumani, A. K., Siddique, W. A., & Yaşar, E. (2021). Voting combinations-

based ensemble: A hybrid approach. Celal Bayar University Journal of Science, 18(3), 257-

263.

2024 by the authors; Asian Academy of Business and social science research Ltd Pakistan. This is an open

access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license

(http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/licenses/by/4.0/

