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Drought represents a significant disaster that directly impacts the
economic and ecological welfare of any nation it afflicts. This study
focused on the climatic anomalies of drought over the Ningxia Hui
autonomous region in northwest China over the last two decades.
The study employed an in-depth machine learning model, which
incorporated drought indices, thus leading to a data-informed
analysis of Ningxia drought patterns. The study accomplished this by
using MODIS satellite data products available for vegetation and
moisture monitoring. The MODO9GA, MOD11A2, and MCD43A4 data
streams were loaded into Google Earth Engine as factors to develop
a time-series dataset of vegetation indices. Indices are Normalized
Difference Vegetation Index (NDVI), Enhanced Vegetation Index
(EVI), and Land Surface Temperature (LST) measurements are taken
infto account. Data on temperature, precipitation, and
evapotranspiration was compiled for the period from 2003 to 2023
and calculated standardized indices on pixel level for the whole
Ningxia region to develop the Standardized Precipitation Index (SPI),
Keetch-Byram Drought Index (KBDI), and Standardized Precipitation-
Evapotranspiration Index ( The study results indicated that SPI fell
significantly from the year 2003 to 2023, from 0.7 to -0.3. The SPEI
plummeted from 0.5 to -0.2 during the observed time frame. KBDI
also went up, through 581.33 in 2003 and 681.091 in 2023, showing
deterioration of aridity and drying of the soil. The conclusion of this
study focuses on the deterioration of drought conditions in the
Ningxia region in the last 20 years.
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INTRODUCTION

Drought is a cyclic natural calamity that impacts agricultural output, water reserves,
ecology, and socio-economic progress (Cheng et al., 2023). It can result in significant
declines in crop production, strain water resources, raise the likelihood of fires, and result
in substantial financial losses (Xu et al., 2024). Given the growing threat of drought caused
by climate change, it is essential to be aware of past frends and weaknesses to develop
effective measures for adapting to and mitigating its impacts (Gosh et al., 2024). The
Ningxia Hui Autonomous Region in northwest China is susceptible to droughts due to its
arid climate, elevated temperatures, and limited yearly rainfall (Kafy et al., 2023). This
study examines the drought patterns in Ningxia from 2003 to 2023 by utilizing satellite
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remote sensing data and climatic records (Tyagi et al., 2022). Machine learning
techniques, such as regression trees and random forests, are employed to create models
that capture the connections between remote sensing inputs and the intensity of
drought (Mardian et al., 2023). Drought disasters, defined as prolonged periods of
substantially reduced precipitation, have wide-ranging effects on the environment,
agriculture, and human societies (Zhang et al., 2023). They are closely connected to the
constantly changing dynamics of our climate system, and their occurrence and intensity
are affected by changes in atmospheric conditions and consistent weather patterns
(Mohammed et al., 2024). Droughts, resulting from increasing temperatures and
continuous decreases in precipitation levels, result in the decline of soil moisture,
decreasing water resources, and lower agricultural productivity. These droughts can
worsen vulnerabilities in areas with dry climates or limited access to water reservoirs,
producing significant challenges for food security, livelihoods, and the availability of safe
drinking water. The ongoing climate change increases the frequency and intensity of
drought occurrences, rendering them more frequent and severe (Gallear et al., 2024).
Understanding the interaction between drought and climate is essential for efficient
catastrophe management and adaptive solutions. This comprehension aids in reducing
the effects of droughts, guaranteeing sustainable farming methods, and enhancing
community resilience (Alkaraki et al., 2023).

The Standardized Precipitation Index (SPI) and the Standardized Precipitation
Evapotranspiration Index (SPEI) are now essential tools for global drought monitoring
agencies and decision-makers. The World Meteorological Organization (WMO)
acknowledged the pressing need for integrated drought management, recognizing that
droughts encompass various aspects, including climate, water resources, and society
(Yue et al., 2023). The recommendations on Integrated Drought Management (IDM)
provide a comprehensive framework for effectively managing the impacts of drought
(Zhang et al., 2023). They emphasize the proactive collaboration of many sectors,
stakeholders, and institutions (Foroumandi et al., 2023). The study aims to examine the
spatiotemporal occurrence of drought disasters in the Ningxia Hui Autonomous Region
of China over the past two decades. This will be achieved using MODIS remote sensing,
climate data, and a machine learning methodology. The study seeks to analyze
drought's temporal and spatial fluctuations, evaluate its effects on agriculture, and
ascertain the specific attributes of drought in the area. The project will utilize multi-
temporal MODIS data to examine spatiotemporal fluctuations in dryness in the area and
evaluate the precision of the machine learning method in forecasting drought.

MATERIALS AND METHODS
Study Area

The Ningxia Hui Autonomous Region in far northwestern Asia of China has a very huge
area of 66,400 square kilometers. It must be additionally millions of people being there.
There is an aridity situation, with less rain and higher evaporation. The ordinary
temperature is namely higher. The mean annual precipitation which is weary (varying
from) 200 to 700 mm, is majorly distributed from the months of July to September when
the East Asian monsoon rains arrive, making up to 80 and 60%, respectively. The average
temperature of Ningxia ranges from -10°C to 25°C. The region falls within the North
Temperate Zone with a continental monsoon climate, and its capital city is Yinchuan
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(Pandya et al., 2023). The Yellow River flows through Ningxia. By providing an important
water source for irrigation and hydropower but also contributing to problems like
flooding, soil erosion, and desertification.

Study Area Map
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Figure 1.
Study Area Map
Datasets

This study benefited from the diversification of satellite platforms and types of remote
sensors to gather data at various points over a 20-year span. The key data sources were
MODO9GA, MODI11A2, and MCD43A4 products, all of which are based on the Moderate
Resolution Imaging Spectroradiometer (MODIS) reducing system (Speer et al., 2024). The
data from MODIS gives a range of spatial resolution covering 500 meters to 1200
kilometers, helping in capturing the detailed and broad features across the study area.
Also, the study area is combined with climate data from the Climate Data repository and
boundary information from the DIVA-GIS database (Chen et al., 2023). Integration of climate
data from the two-decade period allowed the researchers to investigate long-term
tfrends and patterns that might be significant to the understudied area. The boundary
data, on the other hand, facilitated the delineation of the study region and the
identification of key geographical features of interest (Prodhan et al., 2022). The data
collection spanned three distinct years, 2003, 2022, and 2023, which would be the years
selected as they give us an overall temporal perspective on the matter, thereby allowing
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us to see the underlying trends as well as the changes over time (Shahfahad et al., 2024).
The channels incorporated in this study, namely Earth Explorer, Earth Engine, Climate
Data, and DIVA-GIS, have established names and hard-earned reputations. Thus, the
overall credibility and authority of the data within the study are guaranteed.

SPEl: Standardized Precipitation Evapotranspiration Index, KBDI: Keetch-Byram drought
index.

Table 2.
Summary of vegetation and drought indices.

Product Data Used Spatial Temporal Formula

Resolution Resolution
NDVI MODO09GA 500m Daily _ NIR - Red
" NIR + Red
LST MODI11A2 1200*1200km  8-day = DN x 0.02 —273.15
EVI MCD43A4 463.313m 16-Day 254 NIR — Red
" (NIR+C1*Red—C2*BLUE + L)
SPI CHIRPS - Monthly _X—Xm
precipitation T o
SPEI CSIC/SPEI/2_8 1° 24 Month B c0 + c1W + c2W?
"1+ dIW + d2W2? + d3W3
KBDI WTLAB/KBDI/v1 - Daily 3

(800 — Q). (0.968.¢0046T _830).At _ _
=+ 1+ 10.88.¢00%86T 10

Note: NDVI: Normalized Difference Vegetation Index, LST: Land Surface Temperature, EVI:
Enhanced Vegetation Index, SPI: Standardized Precipitation Index, SPEl: Standardized
Precipitation Evapotfranspiration Index, KBDI: Keetch-Byram drought index Table 3
summarizes agricultural drought disaster models using machine learning models (MLMs).
MLMs are utilized for drought prediction based on available data.

Table 3
Agricultural drought prediction summary using machine learning models (MLMs).
Model Data type Predictor Response Forecasting Outcome
variables variable lead time
CART, and  MODIS EVI, NDVI, LST SPEI Seasonal Increased
SVM drought
area
prediction
SVM Meteorological Slope, aspect, SPI - Agricultural
data elevation, annual drought
precipitation prediction
Cubist MODIS, TRMM and NDVI, EVI, LST SPI Seasonal Severe
climate data Drought
Index
Mapping
SVM Soil Moisture LST, ET, EVI, SPEl and crop 12-months Drought
precipitation, yield severity
NDVI distribution
maps
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CART and SVM models predict SPEI annually, Cubist models predict SPI on a seasonal
basis, and LSTM models predict SPElI on a 12-month basis using various data types like soll
moisture, LST, ET, EVI, precipitation, and NDVI (Han et al., 2021).

Figure 2.
Methodology Flowchart
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PROCESSING AND METHODS

Remote Sensing Indices for Drought

The Normalized Difference Vegetation Index (NDVI) is a remote sensing metric used to
quantify the presence of healthy green vegetation within a given region (Li et al., 2021).
The calculation is performed using a machine learning technique that combines the
reflectance coefficients of near-infrared and red light emitted by the Earth's surface. The
research area in Ningxia was used to perform NDVI analysis on Google Earth Engine using
MODIS/MODO9GA surface reflectance variables. The MODO0YGA.006 Terra Surface
Reflectance Daily Global Tkm and 500m dataset was utilized to refrieve the NDVI. The
Normalized Difference Vegetation Index (NDVI) varies between -1.0 to 1.0 (Mardian et
al., 2023).

NIR — Red

NDVI= VTR ¥ Red
The Enhanced Vegetation Index (EVI) is an satellite metric that calculates vegetation
coverage via interpretation of infrared, red, and blue spectrum signals coming from the
surface of the Earth (Karbasi et al., 2023). A research of this form, in Ningxia, China, is carried
using Google Earth Engine. The EVI extends from -1 to 1, with the higher positive value
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meaning that vegetation is more abundant. Cooling planet earth is the major purpose
for MODIS Combined 16-Day EVI product. This product derived from
MODIS/006/MCD43A4 surface reflectance composites and has a resolution of 1 pixel
which is 463.313 meters (Lalika et al., 2024).
NIR — Red
EVI=2.5+ (NIR + C1 * Red — C2 * BLUE + L)
Land Surface Temperature (LST) is an essential parameter for monitoring the Earth's
surface temperature and its changes over time. The MODIS/061/MOD11A2 dataset was
used to measure Land Surface Temperature (LST) on the Google Earth Engine in Ningxia
(Hao et al., 2023). It provides an average 8-day LST in a 1200 x 1200-kilometer grid,
allowing for the tracking of variations in land surface temperature and the consequences
of climate change (Adnan et al., 2023).
LST = DN x 0.02 — 273.15
Machine learning algorithms have the ability to detect patterns in data, which leads to
progressive enhancement of software performance (Zhang et al., 2023). The
Standardized Precipitation statistic (SPI) is a commonly employed statistic that is utilized
to describe agricultural drought across different time periods (Sharafi et al., 2023). The
research area in Ningxia utilized the CHIRPS precipitation dataset to conduct estimates
of the Standardized Precipitation Index (SPI). The script was run in Google Earth Engine
and consisted of two separate calculations: one for the "common" SPI (n-month) and the
other based on MODIS capture dates. Spectral precipitation index (SPI) can be utilized
to observe variations in precipitation and investigate the influence of climate change on
Earth's precipitation patterns (Wang et al., 2023).
spr =21

o
X = precipitation for the station, Xm = Mean Precipitation, o = Standardized deviation.
Table 4.
Classification of SPI

SPI Category Value
Less than -2 Extremely dry
Between -1.5 & -2 Severely dry
Between -1 &-1.5 Dry
Between -0.5 & -1 Moderately dry
Between 0.5 & -0.5 Normal
Between 0.5 & 1 Wet
Between 1 & 1.5 Moderately wet
Between 1.5 & 2 Severely wet
More than 2 Extremely wet

The Standardized Precipitation Evapotranspiration Index (SPEI) is a drought index that
relies on data regarding precipitation and evapotranspiration (Sadig et al., 2023). The
study conducted in Ningxia utilized the CSIC/SPEI/2_8 dataset, which offers global maps
and data of the Standardized Precipitation-Evapotranspiration Index (SPEI) at a spatial
resolution of 1° for the entire Earth (Archite et al., 2023). The study spanned a duration of
24 months. The dataset was analyzed, and drought conditions were monitored over time
using machine learning methods. The SPEI parameters consist of the sum of monthly
precipitation and monthly potential evapotranspiration, which is determined using the
Thornthwaite equation. The calculation of the Standardized Precipitation
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Evapotranspiration Index (SPEl) includes subtracting reference evapotranspiration from
precipitation in order to provide a more accurate indicator of the severity of drought (He
et al., 2023).

co+ W + c,W?

SPEI =W —
1+d,W+d,W?+d;Ww3

Where:
W= ,-2In(P) forP < 0.5
P = probability of exceeding a determined D value, p=1-f(x);

When P > 0.5, p=1-P, constants are:

co = 2515517 d, = 1432788
c; = 0.802853 d, = 0.189269
c, = 0.010328 d; = 0.001308
Table 5.
Classification of SPEI
SPEI Category SPEl Value
Extremely wet More than 2.00
Very wet 1.50 to 1.99
Moderately wet 1.00 to 1.49
Near Normal -0.99 10 0.99
Moderately dry -1.00 to -1.49
Severely dry -1.50 to -1.99
Extremely dry Less than -2.00

The Keetch-Byram drought index (KBDI) is a method utilized to assess the deficiency of
soil moisture by considering measures of daily precipitation and temperature (Feng et al.,
2019). It was utilized in the research area of Ningxia to establish a consistent reference
scale for assessing the dryness of soil and duff layers. The indicator exhibits a positive
correlation with high temperatures and is not influenced by the absence of rainfall. The
scale ranges from 0 (no moisture deficit) to 800 (extreme drought). The KBDI is widely used
for drought monitoring for national weather forecasts and wildfire prevention, especially
in regions with rain-fed crops (Rui et al., 2023).

(800 — Q). (0.968.¢%0485T _ g 30). At Lo
1+ 10.88. ¢00486T '

Q, which represents the previous day's KBDI adjusted by the net rainfall in inches per
hundred (cf. details below); T, the air temperature in degrees Fahrenheit; At, the time
increment (typically one day); and P, signifying the mean annual precipitation in inches.
When it comes to temperature, the maximum air temperature, or the dry-bulb
temperature observed at the time of the essential measurement, should be used as the
relevant input.

KBDI = Q +

Q = KBDI;_, — Pnet;.100
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rr—1
Pnet; = max [0, P, — max (0, Pjj;, — P._i)
i=1

With """ denoting the count of consecutive days on which rain has occurred.

RESULTS
Normalized Difference Vegetation Index (NDVI)

The NDVI performed on MODIS data from 2003 to 2023 on the Ningxia, China study area
shows a general decrease in vegetation over time. Machine learning was used to
analyze and predict the spatiotemporal dynamics of vegetation in Ningxia, China. By
applying machine learning algorithms to the MODIS, patterns, and trends in the
vegetation changes over time were identified. Figure 3 shows that the highest NDVI
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values were recorded in 2003, with a high of 0.38 and a low of -0.14. The lowest NDVI
values were recorded in 2023, with a high of 0.19 and a low of -0.09. The decline in NDVI
is most probably attributed to a confluence of causes, encompassing climate change,
alterations in land use, and urbanization. The most significant declines in NDVI have been
observed in the central and western regions of Ningxia.

Figure 3.

NDVI Map 2003-2023

Enhanced Vegetation Index EVI

The EVI was performed using Google Earth Engine using MODIS in Ningxia, China, from
2003 to 2023. Machine learning techniques have been used to monitor desertification
changes in Ningxia. Figure 5 shows that the average annual soil erosion rate for Ningxia,
China, from 2003 to 2023 has been increasing. The average EVI in 2003 was -0.11, while
the average in 2023 was -0.09. It represents an increase of 18% over the 20 years. Climate
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change has led to more frequent and severe droughts, which can increase the risk of soll
erosion.
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Figure 6,

EVI Map from 2003-2023

EVI 2003-2023

EVI (max) = EVI (min)

Figure 5.

EVI graph showing fluctuations in droughts from 2003-2023

Land Surface Temperature (LST)

The map in Figure 7 shows the Land Surface Temperature (LST) of Ningxia, China, from
2003 to 2023. A machine learning technique was used to integrate the GEE. Model
package to estimate LST from 2003 to 2023 using data in Earth Engine and a trained
model. Which were derived from MODIS data using the Google Earth Engine. The LSTis in
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degrees Celsius, with a range of 4.6-31. LST of Ningxia has increased over time. In 2003,
the average LST of Ningxia was 14.3 degrees Celsius. By 2023, the average LST of Ningxia
had increased to 16.7 degrees Celsius.
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Figure 7.
LST Map from 2003-2023
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Figure 8.
LST graph displaying the incline in temperature of land surface from 2003 to 2023
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Figure 9.

Comparison graph of LST and NDVI shows the inverse relation. Land surface temperature (LST)
is increasing while the Normalized Difference Vegetation Index (NDVI) is decreasing from 2003
to 2023.

Standardized Precipitation Index (SPI)

The map in Figure 10 shows that the SPI of Ningxia has fluctuated over time but has
generally decreased since 2003. Machine learning technique was used to analyze the
factors that contribute to the shifts in SPI. In 2003, the average SPI of Ningxia was 0.7. By
2023, the average SPI of Ningxia had decreased to -0.3. This decrease in SPI indicates
that Ningxia has become drier over time. The change in the spatial distribution of SPI is
likely a result of various variables, such as alterations in climatic patterns and land
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Figure 11.

The SPI graph shows an apparent reduction in moisture levels in the region between 2003 and
2023, which can be attributed to climate change, population expansion, and alterations in
land utilization.

Standardized Precipitation Evapotranspiration Index (SPEI)

The SPEI was employed as an indicator to identify the likelihood of drought using machine
learning algorithms implemented via the Google Earth Engine (GEE) platform. The
Standardized Precipitation-Evapotranspiration Index (SPEI) in Ningxia has exhibited
temporal variability, but overall, it has experienced a downward trend since 2003. The
average SPEI of Ningxia in 2003 was 0.5, as depicted in Figure 12. In 2023, the average
SPEIin Ningxia has declined to -0.2. The decline in SPEI suggests a progressive aridification

of Ningxia.
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Keetch-Byram Drought Index (KBDI)

Machine learning techniques have been employed to examine the KBDI, which is a
metric used to assess dryness and the risk of wildfires. The map depicted in Figure 14
illustrates a gradual increase in Ningxia's average Keetch-Byram Drought Index (KBDI)
throughout the years, rising from 581.133 in 2007 to 681.091 in 2023. This suggests a more
arid climate and a heightened susceptibility to wildfires in the area. The spatial distribution
of the Keetch-Byram Drought Index (KBDI) has undergone temporal changes.
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Figure 14.
KBDI Maps from 2007-2023
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Figure 15.
The Keetch-Byram Drought Index (KBDI) graph spanning from 2007 to 2023 demonstrates an

upward trend in the frequency of drought conditions in recent years.

CONCLUSION

MODIS images from 2003 and 2023 were procured and were, in turn, modified for
atmospheric correction, radiometric correction, and extraction of the study area during
pre-processing. LST measurement was performed using the MODIS LST algorithm.
Moderate Resolution Imaging Spectroradiometer (MODIS) reflectance data was used for
the calculation of vegetation indices (NDVI and EVI). Meteorological stations transmitted
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information about precipitation and evapotranspiration. The drought indices (SPI, KBDI,
and SPEl) were computed using data on precipitation, temperature, and
evapofranspiration observation. The RF model was modeled and trained to classify the
drought intensity levels. The model was trained on a dataset that was a combination of
drought indices and land cover data. The level of drought severity for each time scale is
being determined for the years 2003 and 2023. During that survey period, drought
intensity increased to the point of crisis in certain parts of the region. The Random Forest
(RF) model correctly split the levels of drought severity with accuracy above 85% level.
An increase of 15% and 10%, respectively, in the expanse of severe and moderate
drought regions was noted from 2003 to 2023. Mild drought was also reduced by 25% in
a similar time frame. The findings of this work may be applied to design solutions for
drought reduction and adaptation in the Ningxia Hui Autonomous Region.
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