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Drought represents a significant disaster that directly impacts the 

economic and ecological welfare of any nation it afflicts. This study 

focused on the climatic anomalies of drought over the Ningxia Hui 

autonomous region in northwest China over the last two decades. 

The study employed an in-depth machine learning model, which 

incorporated drought indices, thus leading to a data-informed 

analysis of Ningxia drought patterns. The study accomplished this by 

using MODIS satellite data products available for vegetation and 

moisture monitoring. The MOD09GA, MOD11A2, and MCD43A4 data 

streams were loaded into Google Earth Engine as factors to develop 

a time-series dataset of vegetation indices. Indices are Normalized 

Difference Vegetation Index (NDVI), Enhanced Vegetation Index 

(EVI), and Land Surface Temperature (LST) measurements are taken 

into account. Data on temperature, precipitation, and 

evapotranspiration was compiled for the period from 2003 to 2023 

and calculated standardized indices on pixel level for the whole 

Ningxia region to develop the Standardized Precipitation Index (SPI), 

Keetch-Byram Drought Index (KBDI), and Standardized Precipitation-

Evapotranspiration Index ( The study results indicated that SPI fell 

significantly from the year 2003 to 2023, from 0.7 to -0.3. The SPEI 

plummeted from 0.5 to -0.2 during the observed time frame. KBDI 

also went up, through 581.33 in 2003 and 681.091 in 2023, showing 

deterioration of aridity and drying of the soil. The conclusion of this 

study focuses on the deterioration of drought conditions in the 

Ningxia region in the last 20 years.  
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INTRODUCTION 

Drought is a cyclic natural calamity that impacts agricultural output, water reserves, 

ecology, and socio-economic progress (Cheng et al., 2023). It can result in significant 

declines in crop production, strain water resources, raise the likelihood of fires, and result 

in substantial financial losses (Xu et al., 2024). Given the growing threat of drought caused 

by climate change, it is essential to be aware of past trends and weaknesses to develop 

effective measures for adapting to and mitigating its impacts (Gosh et al., 2024). The 

Ningxia Hui Autonomous Region in northwest China is susceptible to droughts due to its 

arid climate, elevated temperatures, and limited yearly rainfall (Kafy et al., 2023). This 

study examines the drought patterns in Ningxia from 2003 to 2023 by utilizing satellite 
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remote sensing data and climatic records (Tyagi et al., 2022). Machine learning 

techniques, such as regression trees and random forests, are employed to create models 

that capture the connections between remote sensing inputs and the intensity of 

drought (Mardian et al., 2023). Drought disasters, defined as prolonged periods of 

substantially reduced precipitation, have wide-ranging effects on the environment, 

agriculture, and human societies (Zhang et al., 2023). They are closely connected to the 

constantly changing dynamics of our climate system, and their occurrence and intensity 

are affected by changes in atmospheric conditions and consistent weather patterns 

(Mohammed et al., 2024). Droughts, resulting from increasing temperatures and 

continuous decreases in precipitation levels, result in the decline of soil moisture, 

decreasing water resources, and lower agricultural productivity. These droughts can 

worsen vulnerabilities in areas with dry climates or limited access to water reservoirs, 

producing significant challenges for food security, livelihoods, and the availability of safe 

drinking water. The ongoing climate change increases the frequency and intensity of 

drought occurrences, rendering them more frequent and severe (Gallear et al., 2024). 

Understanding the interaction between drought and climate is essential for efficient 

catastrophe management and adaptive solutions. This comprehension aids in reducing 

the effects of droughts, guaranteeing sustainable farming methods, and enhancing 

community resilience (Alkaraki et al., 2023). 

The Standardized Precipitation Index (SPI) and the Standardized Precipitation 

Evapotranspiration Index (SPEI) are now essential tools for global drought monitoring 

agencies and decision-makers. The World Meteorological Organization (WMO) 

acknowledged the pressing need for integrated drought management, recognizing that 

droughts encompass various aspects, including climate, water resources, and society 

(Yue et al., 2023). The recommendations on Integrated Drought Management (IDM) 

provide a comprehensive framework for effectively managing the impacts of drought 

(Zhang et al., 2023). They emphasize the proactive collaboration of many sectors, 

stakeholders, and institutions (Foroumandi et al., 2023). The study aims to examine the 

spatiotemporal occurrence of drought disasters in the Ningxia Hui Autonomous Region 

of China over the past two decades. This will be achieved using MODIS remote sensing, 

climate data, and a machine learning methodology. The study seeks to analyze 

drought's temporal and spatial fluctuations, evaluate its effects on agriculture, and 

ascertain the specific attributes of drought in the area. The project will utilize multi-

temporal MODIS data to examine spatiotemporal fluctuations in dryness in the area and 

evaluate the precision of the machine learning method in forecasting drought. 

MATERIALS AND METHODS 

Study Area 

The Ningxia Hui Autonomous Region in far northwestern Asia of China has a very huge 

area of 66,400 square kilometers. It must be additionally millions of people being there. 

There is an aridity situation, with less rain and higher evaporation. The ordinary 

temperature is namely higher. The mean annual precipitation which is weary (varying 

from) 200 to 700 mm, is majorly distributed from the months of July to September when 

the East Asian monsoon rains arrive, making up to 80 and 60%, respectively. The average 

temperature of Ningxia ranges from -10°C to 25°C. The region falls within the North 

Temperate Zone with a continental monsoon climate, and its capital city is Yinchuan 
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(Pandya et al., 2023). The Yellow River flows through Ningxia. By providing an important 

water source for irrigation and hydropower but also contributing to problems like 

flooding, soil erosion, and desertification. 

Study Area Map 

 

Figure 1. 

Study Area Map 

Datasets 

This study benefited from the diversification of satellite platforms and types of remote 

sensors to gather data at various points over a 20-year span. The key data sources were 

MOD09GA, MOD11A2, and MCD43A4 products, all of which are based on the Moderate 

Resolution Imaging Spectroradiometer (MODIS) reducing system (Speer et al., 2024). The 

data from MODIS gives a range of spatial resolution covering 500 meters to 1200 

kilometers, helping in capturing the detailed and broad features across the study area. 

Also, the study area is combined with climate data from the Climate Data repository and 

boundary information from the DIVA-GIS database (Chen et al., 2023). Integration of climate 

data from the two-decade period allowed the researchers to investigate long-term 

trends and patterns that might be significant to the understudied area. The boundary 

data, on the other hand, facilitated the delineation of the study region and the 

identification of key geographical features of interest (Prodhan et al., 2022). The data 

collection spanned three distinct years, 2003, 2022, and 2023, which would be the years 

selected as they give us an overall temporal perspective on the matter, thereby allowing 
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us to see the underlying trends as well as the changes over time (Shahfahad et al., 2024). 

The channels incorporated in this study, namely Earth Explorer, Earth Engine, Climate 

Data, and DIVA-GIS, have established names and hard-earned reputations. Thus, the 

overall credibility and authority of the data within the study are guaranteed. 

SPEI: Standardized Precipitation Evapotranspiration Index, KBDI: Keetch-Byram drought 

index. 

Table 2. 

Summary of vegetation and drought indices. 
Product Data Used Spatial 

Resolution 

Temporal 

Resolution 

Formula 

NDVI MOD09GA 500m Daily 
=

𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 

LST MOD11A2 1200*1200km 8-day = 𝐷𝑁 × 0.02 − 273.15 

EVI MCD43A4 463.313m  16-Day 
= 2.5 ∗

𝑁𝐼𝑅 − 𝑅𝑒𝑑

(𝑁𝐼𝑅 + 𝐶1 ∗ 𝑅𝑒𝑑 − 𝐶2 ∗ 𝐵𝐿𝑈𝐸 + 𝐿)
 

SPI CHIRPS 

precipitation 

- Monthly 
=

𝑋 − 𝑋𝑚

𝜎
 

SPEI CSIC/SPEI/2_8 1º 24 Month 
= 𝑊 −

𝑐0 + c1W + c2𝑊2

1 + 𝑑1𝑊 + 𝑑2𝑊2 + 𝑑3𝑊3
 

KBDI WTLAB/KBDI/v1  - Daily 
= Q +

(800 − 𝑄). (0.968. 𝑒0.0486.𝑇 − 8.30). ∆𝑡

1 + 10.88. 𝑒0.0486.𝑇  . 10−3 

 

Note: NDVI: Normalized Difference Vegetation Index, LST: Land Surface Temperature, EVI: 

Enhanced Vegetation Index, SPI: Standardized Precipitation Index, SPEI: Standardized 

Precipitation Evapotranspiration Index, KBDI: Keetch-Byram drought index Table 3 

summarizes agricultural drought disaster models using machine learning models (MLMs). 

MLMs are utilized for drought prediction based on available data.  
Table 3 

Agricultural drought prediction summary using machine learning models (MLMs).

Model Data type Predictor 

variables 

Response 

variable 

Forecasting 

lead time 

Outcome 

CART, and 

SVM 

MODIS EVI, NDVI, LST SPEI Seasonal Increased 

drought 

area 

prediction 

SVM Meteorological 

data 

Slope, aspect, 

elevation, annual 

precipitation 

SPI - Agricultural 

drought 

prediction 

Cubist MODIS, TRMM and 

climate data 

NDVI, EVI, LST SPI Seasonal Severe 

Drought 

Index 

Mapping 

SVM Soil Moisture LST, ET, EVI, 

precipitation, 

NDVI 

SPEI and crop 

yield 

12-months Drought 

severity 

distribution 

maps 
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CART and SVM models predict SPEI annually, Cubist models predict SPI on a seasonal 

basis, and LSTM models predict SPEI on a 12-month basis using various data types like soil 

moisture, LST, ET, EVI, precipitation, and NDVI (Han et al., 2021). 

Figure 2.  

Methodology Flowchart 

PROCESSING AND METHODS 
Remote Sensing Indices for Drought 
The Normalized Difference Vegetation Index (NDVI) is a remote sensing metric used to 

quantify the presence of healthy green vegetation within a given region (Li et al., 2021). 

The calculation is performed using a machine learning technique that combines the 

reflectance coefficients of near-infrared and red light emitted by the Earth's surface. The 

research area in Ningxia was used to perform NDVI analysis on Google Earth Engine using 

MODIS/MOD09GA surface reflectance variables. The MOD09GA.006 Terra Surface 

Reflectance Daily Global 1km and 500m dataset was utilized to retrieve the NDVI. The 

Normalized Difference Vegetation Index (NDVI) varies between -1.0 to 1.0 (Mardian et 

al., 2023). 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 

The Enhanced Vegetation Index (EVI) is an satellite metric that calculates vegetation 

coverage via interpretation of infrared, red, and blue spectrum signals coming from the 

surface of the Earth (Karbasi et al., 2023). A research of this form, in Ningxia, China, is carried 

using Google Earth Engine. The EVI extends from -1 to 1, with the higher positive value 



 

 

 

The Asian Bulletin of Big Data Management                                               Data Science 4(2),119-134                                                    

124 
 

meaning that vegetation is more abundant. Cooling planet earth is the major purpose 

for MODIS Combined 16-Day EVI product. This product derived from 

MODIS/006/MCD43A4 surface reflectance composites and has a resolution of 1 pixel 

which is 463.313 meters (Lalika et al., 2024). 

𝐸𝑉𝐼 = 2.5 ∗
𝑁𝐼𝑅 − 𝑅𝑒𝑑

(𝑁𝐼𝑅 + 𝐶1 ∗ 𝑅𝑒𝑑 − 𝐶2 ∗ 𝐵𝐿𝑈𝐸 + 𝐿)
 

Land Surface Temperature (LST) is an essential parameter for monitoring the Earth's 

surface temperature and its changes over time. The MODIS/061/MOD11A2 dataset was 

used to measure Land Surface Temperature (LST) on the Google Earth Engine in Ningxia 

(Hao et al., 2023). It provides an average 8-day LST in a 1200 x 1200-kilometer grid, 

allowing for the tracking of variations in land surface temperature and the consequences 

of climate change (Adnan et al., 2023). 
𝐿𝑆𝑇 = 𝐷𝑁 × 0.02 − 273.15 

Machine learning algorithms have the ability to detect patterns in data, which leads to 

progressive enhancement of software performance (Zhang et al., 2023). The 

Standardized Precipitation statistic (SPI) is a commonly employed statistic that is utilized 

to describe agricultural drought across different time periods (Sharafi et al., 2023). The 

research area in Ningxia utilized the CHIRPS precipitation dataset to conduct estimates 

of the Standardized Precipitation Index (SPI). The script was run in Google Earth Engine 

and consisted of two separate calculations: one for the "common" SPI (n-month) and the 

other based on MODIS capture dates. Spectral precipitation index (SPI) can be utilized 

to observe variations in precipitation and investigate the influence of climate change on 

Earth's precipitation patterns (Wang et al., 2023). 

𝑆𝑃𝐼 =
𝑋 − 𝑋𝑚

𝜎
 

X = precipitation for the station, Xm = Mean Precipitation, σ = Standardized deviation. 
Table 4. 

Classification of SPI 
SPI Category Value 

Less than -2 Extremely dry 

Between -1.5 & -2 Severely dry 

Between -1 & -1.5 Dry 

Between -0.5 & -1 Moderately dry 

Between 0.5 & -0.5 Normal 

Between 0.5 & 1 Wet 

Between 1 & 1.5 Moderately wet 

Between 1.5 & 2 Severely wet 

More than 2 Extremely wet 

The Standardized Precipitation Evapotranspiration Index (SPEI) is a drought index that 

relies on data regarding precipitation and evapotranspiration (Sadiq et al., 2023). The 

study conducted in Ningxia utilized the CSIC/SPEI/2_8 dataset, which offers global maps 

and data of the Standardized Precipitation-Evapotranspiration Index (SPEI) at a spatial 

resolution of 1º for the entire Earth (Archite et al., 2023). The study spanned a duration of 

24 months. The dataset was analyzed, and drought conditions were monitored over time 

using machine learning methods. The SPEI parameters consist of the sum of monthly 

precipitation and monthly potential evapotranspiration, which is determined using the 

Thornthwaite equation. The calculation of the Standardized Precipitation 
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Evapotranspiration Index (SPEI) includes subtracting reference evapotranspiration from 

precipitation in order to provide a more accurate indicator of the severity of drought (He 

et al., 2023).  

𝑆𝑃𝐸𝐼 = 𝑊 −
𝑐0 + 𝑐1W + 𝑐2𝑊2

1 + 𝑑1𝑊 + 𝑑2𝑊2 + 𝑑3𝑊3
 

Where: 

𝑊 =  √−2 ln(𝑃)   for P ≤  0.5 

P = probability of exceeding a determined D value, p=1-f(x); 

When P > 0.5, p=1-P, constants are: 

𝑐0  =  2.515517 𝑑1  =  1.432788 

 𝑐1  =  0.802853 𝑑2  =  0.189269 

 𝑐2 =  0.010328 𝑑3 =  0.001308 

Table 5. 

Classification of SPEI 
SPEI Category SPEI Value 

Extremely wet More than 2.00 

Very wet 1.50 to 1.99 

Moderately wet 1.00 to 1.49 

Near Normal -0.99 to 0.99 

Moderately dry -1.00 to -1.49 

Severely dry -1.50 to -1.99 

Extremely dry Less than -2.00 

 

The Keetch-Byram drought index (KBDI) is a method utilized to assess the deficiency of 

soil moisture by considering measures of daily precipitation and temperature (Feng et al., 

2019). It was utilized in the research area of Ningxia to establish a consistent reference 

scale for assessing the dryness of soil and duff layers. The indicator exhibits a positive 

correlation with high temperatures and is not influenced by the absence of rainfall. The 

scale ranges from 0 (no moisture deficit) to 800 (extreme drought). The KBDI is widely used 

for drought monitoring for national weather forecasts and wildfire prevention, especially 

in regions with rain-fed crops (Rui et al., 2023). 

KBDI = Q +
(800 − 𝑄). (0.968. 𝑒0.0486.𝑇 − 8.30). ∆𝑡

1 + 10.88. 𝑒0.0486.𝑇 
 . 10−3 

Q, which represents the previous day's KBDI adjusted by the net rainfall in inches per 

hundred (cf. details below); T, the air temperature in degrees Fahrenheit; Δt, the time 

increment (typically one day); and P, signifying the mean annual precipitation in inches. 

When it comes to temperature, the maximum air temperature, or the dry-bulb 

temperature observed at the time of the essential measurement, should be used as the 

relevant input. 

𝑄 = 𝐾𝐵𝐷𝐼𝑡−1 −  P𝑛𝑒𝑡𝑡 . 100 



 

 

 

The Asian Bulletin of Big Data Management                                               Data Science 4(2),119-134                                                    

126 
 

P𝑛𝑒𝑡𝑡 = max [0, 𝑃𝑡 − max (0, 𝑃lim − ∑ 𝑃t−i 

𝑟𝑟−1

𝑖=1

) 

With "rr" denoting the count of consecutive days on which rain has occurred. 

RESULTS 

Normalized Difference Vegetation Index (NDVI) 

The NDVI performed on MODIS data from 2003 to 2023 on the Ningxia, China study area 

shows a general decrease in vegetation over time. Machine learning was used to 

analyze and predict the spatiotemporal dynamics of vegetation in Ningxia, China. By 

applying machine learning algorithms to the MODIS, patterns, and trends in the 

vegetation changes over time were identified. Figure 3 shows that the highest NDVI 

values were recorded in 2003, with a high of 0.38 and a low of -0.14. The lowest NDVI 

values were recorded in 2023, with a high of 0.19 and a low of -0.09. The decline in NDVI 

is most probably attributed to a confluence of causes, encompassing climate change, 

alterations in land use, and urbanization. The most significant declines in NDVI have been 

observed in the central and western regions of Ningxia. 

Figure 3. 

NDVI Map 2003-2023 

Enhanced Vegetation Index EVI 
The EVI was performed using Google Earth Engine using MODIS in Ningxia, China, from 

2003 to 2023. Machine learning techniques have been used to monitor desertification 

changes in Ningxia. Figure 5 shows that the average annual soil erosion rate for Ningxia, 

China, from 2003 to 2023 has been increasing. The average EVI in 2003 was -0.11, while 

the average in 2023 was -0.09. It represents an increase of 18% over the 20 years. Climate 
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change has led to more frequent and severe droughts, which can increase the risk of soil 

erosion. 

 

Figure 6, 

EVI Map from 2003-2023 

 

Figure 5. 

EVI graph showing fluctuations in droughts from 2003-2023 

Land Surface Temperature (LST) 
The map in Figure 7 shows the Land Surface Temperature (LST) of Ningxia, China, from 

2003 to 2023. A machine learning technique was used to integrate the GEE. Model 

package to estimate LST from 2003 to 2023 using data in Earth Engine and a trained 

model. Which were derived from MODIS data using the Google Earth Engine. The LST is in 
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degrees Celsius, with a range of 4.6-31. LST of Ningxia has increased over time. In 2003, 

the average LST of Ningxia was 14.3 degrees Celsius. By 2023, the average LST of Ningxia 

had increased to 16.7 degrees Celsius. 

 

Figure 7. 

LST Map from 2003-2023 

 

Figure 8. 

LST graph displaying the incline in temperature of land surface from 2003 to 2023 
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Figure 9. 

Comparison graph of LST and NDVI shows the inverse relation. Land surface temperature (LST) 

is increasing while the Normalized Difference Vegetation Index (NDVI) is decreasing from 2003 

to 2023. 

Standardized Precipitation Index (SPI) 

The map in Figure 10 shows that the SPI of Ningxia has fluctuated over time but has 

generally decreased since 2003. Machine learning technique was used to analyze the 

factors that contribute to the shifts in SPI. In 2003, the average SPI of Ningxia was 0.7. By 

2023, the average SPI of Ningxia had decreased to -0.3. This decrease in SPI indicates 

that Ningxia has become drier over time. The change in the spatial distribution of SPI is 

likely a result of various variables, such as alterations in climatic patterns and land 

utilization. 

 

Figure 10. 

SPI Maps from 2003-2023 
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Figure 11. 

The SPI graph shows an apparent reduction in moisture levels in the region between 2003 and 

2023, which can be attributed to climate change, population expansion, and alterations in 

land utilization. 

Standardized Precipitation Evapotranspiration Index (SPEI) 

The SPEI was employed as an indicator to identify the likelihood of drought using machine 

learning algorithms implemented via the Google Earth Engine (GEE) platform. The 

Standardized Precipitation-Evapotranspiration Index (SPEI) in Ningxia has exhibited 

temporal variability, but overall, it has experienced a downward trend since 2003. The 

average SPEI of Ningxia in 2003 was 0.5, as depicted in Figure 12. In 2023, the average 

SPEI in Ningxia has declined to -0.2. The decline in SPEI suggests a progressive aridification 

of Ningxia. 

 

Figure 12. 

SPEI Maps from 2003-2023 

 

Figure 13. 

The graph compares SPI and SPEI, showing a negative trend in the region, with SPEI experiencing 

a more severe drying trend compared to SPI. 
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Keetch-Byram Drought Index (KBDI) 

Machine learning techniques have been employed to examine the KBDI, which is a 

metric used to assess dryness and the risk of wildfires. The map depicted in Figure 14 

illustrates a gradual increase in Ningxia's average Keetch-Byram Drought Index (KBDI) 

throughout the years, rising from 581.133 in 2007 to 681.091 in 2023. This suggests a more 

arid climate and a heightened susceptibility to wildfires in the area. The spatial distribution 

of the Keetch-Byram Drought Index (KBDI) has undergone temporal changes. 

 

Figure 14. 

KBDI Maps from 2007-2023 

 

Figure 15. 

The Keetch-Byram Drought Index (KBDI) graph spanning from 2007 to 2023 demonstrates an 

upward trend in the frequency of drought conditions in recent years. 

CONCLUSION 

MODIS images from 2003 and 2023 were procured and were, in turn, modified for 

atmospheric correction, radiometric correction, and extraction of the study area during 

pre-processing. LST measurement was performed using the MODIS LST algorithm. 

Moderate Resolution Imaging Spectroradiometer (MODIS) reflectance data was used for 

the calculation of vegetation indices (NDVI and EVI). Meteorological stations transmitted 
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information about precipitation and evapotranspiration. The drought indices (SPI, KBDI, 

and SPEI) were computed using data on precipitation, temperature, and 

evapotranspiration observation. The RF model was modeled and trained to classify the 

drought intensity levels. The model was trained on a dataset that was a combination of 

drought indices and land cover data. The level of drought severity for each time scale is 

being determined for the years 2003 and 2023. During that survey period, drought 

intensity increased to the point of crisis in certain parts of the region. The Random Forest 

(RF) model correctly split the levels of drought severity with accuracy above 85% level. 

An increase of 15% and 10%, respectively, in the expanse of severe and moderate 

drought regions was noted from 2003 to 2023. Mild drought was also reduced by 25% in 

a similar time frame. The findings of this work may be applied to design solutions for 

drought reduction and adaptation in the Ningxia Hui Autonomous Region. 
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