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This paper proposes a novel architecture for multi-core processors, 

tailored for high-performance parallel computing. The architecture is 

founded on the innovative notion that complex problems can be 

decomposed into three relatively independent sub-problems: data 

processing, data management, and data communication. It features 

a grid of small, programmable processing units intricately connected 

to their three neighbouring units, forming a physically scalable and 

fractal environment. With flexibility, modularity, and scalability as 

focal points, this architecture aims to address the anticipated real-

time signal processing demands in future telecommunication and 

multimedia systems. One notable aspect of the proposed 

architecture is its direct support for object-oriented features at the 

hardware level. Adopting a hybrid approach with Scratchpad 

Memory (SPM) combined with Cache in the on-chip memory 

hierarchy enhances performance and adaptability for sophisticated 

multi-core applications. The study highlights SPM management and 

introduces a dynamic data management framework. Unlike 

traditional SPM allocation methods relying on compiler or profiling 

knowledge, the proposed approach leverages random sampling 

and probability theory to predict hot-access data during runtime. This 

dynamic memory access pattern guides SPM allocation, ensuring 

optimal utilization of SPM's advantages in access speed and energy 

consumption, complemented by hardware support from DataUnit. 

This paper presents a paradigm shift in multi-core processor 

architecture, offering advanced features to meet the evolving 

requirements of parallel computing, making it well-suited for future 

telecommunication and multimedia systems. 
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INTRODUCTION 

The objective of this paper is to introduce a innovative architecture tailored for multi-core 

processors, aimed at enabling high-performance parallel computing. The proposed 

architecture is significant due to its innovative approach to addressing the complex 

challenges inherent in parallel computing tasks. Traditional multi-core architectures often 

struggle to efficiently manage data processing, data management, and data 

communication simultaneously. This paper seeks to overcome these challenges by 

presenting a novel architecture that decomposes complex problems into three relatively 

independent sub-problems. By providing a grid of small, programmable processing units 

intricately connected to their neighboring units, this architecture offers scalability and 
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flexibility crucial for meeting the demands of modern computing applications. Moreover, 

the proposed architecture directly supports object-oriented features at the hardware 

level, enhancing performance and adaptability for sophisticated multi-core 

applications. By combining Scratchpad Memory (SPM) with Cache in the on-chip 

memory hierarchy, the architecture achieves optimal utilization of resources, paving the 

way for efficient parallel computing. It is a new type of architecture proposed based on 

the development trend of architecture in recent years. This paper mainly introduces 

several characteristics and focuses on the SPM-based hierarchical memory architecture 

based on the on-chip SPM management mechanism. In summary, the objective of this 

paper is to introduce an advanced multi-core processor architecture capable of 

addressing the evolving requirements of parallel computing. Its significance lies in its 

ability to offer unprecedented flexibility, modularity, and scalability, making it well-suited 

for future telecommunication and multimedia systems. 

LITERATURE REVIEW 

The proposed architecture can find application in various real-world scenarios where 

high-performance parallel computing is essential. Here are some specific examples: In 

telecommunications systems, in telecommunications, real-time signal processing is 

crucial for tasks like signal modulation, demodulation, and error correction. The proposed 

architecture's ability to handle complex data processing tasks with high efficiency makes 

it suitable for telecommunication systems requiring low-latency and high-throughput 

processing. Multimedia Processing: Multimedia applications such as video encoding, 

decoding, and image processing demand substantial computational resources. The 

architecture's support for parallel computing enables efficient handling of these tasks, 

leading to faster processing times and improved multimedia quality. Scientific 

Computing: Scientific simulations and computations often involve processing large 

datasets and running complex algorithms.  

The proposed architecture's scalability and flexibility make it well-suited for scientific 

computing applications, allowing researchers to perform simulations and analyses more 

efficiently. Data Analytics: With the proliferation of big data, there is a growing need for 

high-performance computing architectures to analyze large datasets quickly. The 

proposed architecture's parallel processing capabilities can accelerate data analytics 

tasks, enabling businesses to extract valuable insights from their data in a timely manner. 

Artificial Intelligence and Machine Learning: AI and machine learning algorithms often 

require intensive computational resources to train models and process large datasets. 

The proposed architecture's support for parallel computing can significantly speed up 

the training process and improve the performance of AI applications.  

Overall, the proposed architecture's versatility and efficiency make it suitable for a wide 

range of real-world applications that require high-performance parallel computing 

capabilities. The 2D-Mesh stands out as the most mature on-chip network structure, as 

illustrated in Figure 2.1 (Deng et al., 2009). Its proven track record and suitability make it 

a preferred interconnection method for on-chip network topology (Egger, Lee, & Shin, 

2008). Low-dimensional networks like the 2D-Mesh offer certain advantages, including 

reduced communication delays and blocking probabilities compared to high-

dimensional networks (Deng, Ji, & Shi, 2009; Takase, Tomiyama, & Takada, 2010). 
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Consequently, in multi-core chip design, low-dimensional networks are frequently chosen 

for interconnecting processing components (Gauthier, Ishihara, & Takada, 2010). Multi-

core interconnect structures have been a focal point in research, driven by the shift from 

Chip Multiprocessors (CMPs) to multi-core and many-core configurations. While the bus 

structure has historically been popular due to its simplicity and ease of implementation 

(Marongiu & Benini, 2010), it is now facing limitations in bandwidth and signal integration 

as technology advances. This has led to a shift towards network-based interconnection 

methods, known as Network-on-Chip (NoC) architectures. 

The 2D-Mesh, depicted in Figure 2.1, has emerged as a mature and suitable choice for 

on-chip network topology (Zuo, Qi, & Jiaxing, 2008; Zuo, Qi, & Jiaxin, 2009; Liu, Ji, Li, et al., 

2009). By enhancing communication bandwidth and efficiency among nodes within 

basic groups, internal interconnections greatly improve communication efficiency. 

However, the full interconnection of nodes within each basic group of the 2D-Mesh can 

incur high costs, as depicted in Fig. 2.2. To address scalability challenges, the size of full 

interconnections is gradually reduced in upper-level interconnections, leading to 

diminished scalability with increasing core count. 
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Figure 2. 

2D-Mesh Structure Full       
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𝑁𝑘+1 =⋃𝐹𝑖(𝑁𝑘)
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………………… . . ……………… . (2.1) 

 

 
 
 
 

          K=3 
 

 
       K=1                  K=2 
           K=0  
 
 
 
 
 
 
Figure 3. 

Schematic diagram of iterative network at k=0, 1, 2, and 3 

FORMAL MODEL OF NETWORK 

Proposed architecture adopts a basic three-layered on-chip network structure to solve 

the problem of full interconnection between the underlying nodes. The structure has the 

advantages of simple topology, low degree of nodes, and obvious hierarchy. The 

topological structure of the three-layered on-chip network is shown in Figure 2.3. It is 

assumed that the iterative function family of the structure is 123{,,}IFSFFF, and the 1-layer 

interconnection network is regarded as the network after 1 iteration (1)N. , () Nk 

represents the k-layer network obtained after k iterations, then the interconnection 

network construction process can be expressed as (Takase, Tomiyama, & Takada, 2010; 

Catthoor et al., 2018). 

The network topology is a low-level, fully interconnected structure in which the basic 

building blocks are a group of three nodes. The fully interconnected structure is called a 

super node. By replacing the nodes in the topology with super nodes, a larger base triple 

topology can be obtained. Figure 2.3 shows the 1-node, 3-node, 9-node, and 27-node 

base three topology structures obtained by the basic components after 0, 1, 2, and 3 

replacements. 

Features of the Interconnect Network 

The static metrics of the general network mainly include: the degree of the network, the 

total number of links, the width of the section and the diameter of the network. From the 

perspective of VLSI layout and routing, low-dimensional networks have advantages in 

implementation compared to high-dimensional networks. Because low-dimensional 

networks have a certain online width, smaller communication delays and blocking 

probabilities can be obtained than high-dimensional networks (Wasly, 2018; Alvarez et 

The total number of nodes after 

layer iteration is:N=3k 
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al., 2015). Therefore, in the design of multi-core chips, low-dimensional networks are often 

used for interconnection between processing components. Table 2.1 shows the 

comparison of several common interconnected network structures in terms of node 

degree, total number of links, cross-sectional width, and network diameter, where N 

represents the number of network nodes.  

According to the calculation formula in the above table, it can be concluded that as 

the number of nodes increases, the changes of various indicators on the network on the 

chip. It is easy to see that the base three network nodes are the smallest among the 

nodes of all networks, which also reduces the required entries for the implementation of 

routers in the base three network. In Table 2.1, several metrics are compared for different 

interconnected network structures, including degree, total number of links, split width, 

and network diameter. These metrics are essential for evaluating the performance and 

efficiency of on-chip network structures. 

Degree: The degree of a network refers to the number of connections or edges each 

node has. In the context of on-chip networks, a lower degree indicates a less complex 

topology with fewer connections per node. This metric is crucial because a lower degree 

typically implies simpler routing algorithms, reduced hardware complexity, and 

potentially lower power consumption. 

Total Number of Links: This metric represents the overall number of connections or links 

within the network. A lower total number of links implies a more efficient use of resources 

and potentially lower hardware costs. It also affects the complexity of routing algorithms 

and the overall scalability of the network. 

Split Width: The split width refers to the number of links crossing a cut in the network. In on-

chip networks, split width is crucial for determining the efficiency of communication 

between different sections or modules of the chip. A smaller split width implies faster 

communication and reduced latency between components. 

Network Diameter: The network diameter is the maximum distance or number of hops 

between any pair of nodes in the network. A smaller network diameter indicates shorter 

communication paths and lower latency, which are critical for real-time applications and 

overall system performance. 

These metrics are essential for evaluating the suitability of on-chip network structures for 

multi-core processors. Lower values for degree, total number of links, split width, and 

network diameter generally indicate more efficient and scalable network architectures, 

which are crucial for meeting the performance requirements of modern computing 

applications. Therefore, comparing these metrics helps researchers and designers 

choose the most appropriate network structure for their specific use case, considering 

factors such as performance, power consumption, and cost. 

Table 1. 

Comparison of Static Metrics for Several Interconnected Networks 
Network Type Interconnect Network Static Metric 

 Degree Total number of links Split Width Network Diameter 

Base three Network 3 3(N-1)/2 log3 N 2log
3

N – 1 

Two-Dimensional Grid 4 2 (N - √𝑁 ) √𝑁 2 (√𝑁 – 1) 
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Two-Dimensional Ring 

Network 
4 2N 2√𝑁 2 (√𝑁 / 2) 

Hypercube log2 N (N × log2 N) / 2 N/2 

 

log2 N 

 

Figure 2.4(a)(b)(c)(d) and (e) and Figure 2.5(a)(b)(c)(d) and (e) show the trends in the 

number of links and network diameters of various networks as the number of nodes 

produces. As can be seen from Figure 2.4, in the case of the same number of nodes, the 

number of links in the base three network is the smallest among all network topologies, 

and the number of links directly affects the complexity of the layout and routing in 

hardware implementation. Hardware overhead. The comparison of the network 

diameters in Figure 2.5 shows that the hypercube has the smallest network diameter 

when the number of nodes is the same, but because the node degree of the hypercube 

grows logarithmically with the number of nodes (2logN), it is not suitable for building on-

chip. It is easy to see that in the case of a small number of nodes (N <140), the network 

diameter of the base three network is smaller than that of the two-dimensional grid. As 

the network scale expands, the network diameter exceeds the network diameter of the 

two-dimensional grid.  

ProcUnit 
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Simplified Description: Think of ProcUnit as the brain of the processor. It's responsible for 

processing data and executing tasks, much like how your brain processes information 

and performs actions.Concrete Example: Imagine ProcUnit as a chef in a kitchen. The 

chef receives orders (data) and performs tasks like chopping vegetables, cooking dishes, 

and serving meals. Similarly, ProcUnit receives data and performs operations like 

calculations, logic tasks, and data manipulation. ProcUnit corresponds to the function or 

method in the object and is mainly responsible for processing the data. Its basic functions 

are similar to those of a normal CPU, used to run normal instructions or to manipulate the 

behavior of objects by processing messages between objects. In addition to the 

functions of the arithmetic logic unit and control unit in the usual processor, ProcUnit can 

also directly support some of the more commonly used object-oriented instructions 

(Egger, Lee, & Shin, 2008). ProcUnit achieves the purpose of changing the state of an 

object by running a method in the object to modify the data corresponding to the 

object. 

 

Figure 4. 

Trend of Link Numbers in Network over Time 
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Figure 5. 

Trend of Network Diameter in the Proposed Network over Time 

Figure 6. 

Schematic Diagram of the Internal Structure of a Single Node. 
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ProcUnit and DataUnit are fundamental components of our proposed architecture for 

multi-core processors. Let's break down their descriptions into simpler terms: 

DATA UNIT 

Simplified Description: DataUnit is like the memory manager of the processor. It handles 

the storage and retrieval of data, ensuring that information is accessible when needed. 

Concrete Example: Think of DataUnit as a librarian in a library. The librarian manages 

books (data) by organizing them on shelves, keeping track of their locations, and 

retrieving them when requested. Similarly, DataUnit manages data by allocating memory 

space, organizing data storage, and facilitating data access for the processor. By 

simplifying ProcUnit and DataUnit using these analogies, it becomes easier to understand 

their roles and how they contribute to the overall functioning of our multi-core processor 

architecture. DataUnit is mainly responsible for the memory management of data. Its 

basic functions can be summarized as follows: 

(1) Provide an efficient object access mechanism. In the object-oriented processor, the 

object replaces the traditional data into the individual stored in the memory, so it is 

necessary to design a special hardware and memory protocol to support the access of 

the object. In the object store, each object exists in the form of a contiguous space in 

memory. When accessing an object, an object reference is needed to identify the 

access object, and the data field contained in the object is usually added by the object 

reference plus the object data offset. The form is accessed. Corresponding to the virtual 

memory technology used in the traditional process-oriented processor, in the object-

oriented processor, the mapping between the object reference and the physical 

address needs to be implemented by establishing an object table. DataUnit is used within 

a single Cell to map such virtual objects to physical addresses. In the work of the students 

before the group, the object memory technology has been discussed in depth (Takase, 

Tomiyama, & Takada, 2010; Deng, Ji, Li, Zuo, & Shi, 2011). 

(2) Dynamic Management of SPM. The program needs to dynamically apply for the 

memory space of the corresponding size during the running process, and release the 

space after a certain time. In proposed architecture, each processing core has a certain 

amount of on-chip SPM resources (Tabbassum, Talpur, Narejo, & Laghari, 2019). The 

allocation and release of local SPM space is also one of the main functions of DataUnit. 

DataUnit's support for SPM allocation is mainly reflected in the hardware support of virtual 

memory management and SPM runtime management. In terms of virtual memory 

management, it supports a variety of granular page sizes. You can adjust the granularity 

of data blocks involved in SPM dynamic management as needed, and update the virtual 

and real address mapping according to the change of physical addresses before and 

after SPM allocation. Address redirection; in terms of SPM runtime management, DataUnit 

mainly provides corresponding hardware support to complete efficient SPM runtime 

dynamic management.  

In order to achieve efficient support for the runtime SPM adaptive algorithm, the 

corresponding hardware components are added to the DataUnit to assist the runtime 

system for efficient SPM management. For example, in the random sampling SPM 

allocation algorithm, the Memory Reference Sampling Unit (MRSU) is integrated into the 
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DataUnit to sample the core data; in the SPM management strategy based on the 

access count, the access accumulator is added in the DataUnit. (ACC) Counts memory 

accesses. This method of dynamic management of SPM through software and hardware 

coordination ensures high runtime efficiency. This paper attempts to use the hardware 

and software synergy method to dynamically manage the application and release of 

SPM. By using the hardware provided by DataUnit, the core working set is predicted at 

runtime and the SPM is managed efficiently. Provide the function of sending and 

receiving messages. DataUnit itself can also be considered as having a pumping Objects 

like functions can provide a certain amount of buffer and support data transmission and 

reception (Gao, 2014; Javaid, Zafar, Awais, & Shah, 2017). When the InterUnit needs to 

forward data to the data store in the local Cell, the DataUnit is responsible for receiving 

the data and assisting in the completion of the data memory function; when the data in 

the DataUnit needs to be forwarded through the InterUnit, it will also provide the local 

cache to be sent data. Perform a temporary memory to be sent by InterUnit at the 

appropriate time. 

 

Figure 7. 

Inter-Unit Structure Diagram 

InterUnit 

As shown in Figure 2.7, InterUnit is mainly responsible for the interaction and forwarding of 

data or messages. The objects interact through messages, and the interaction and 

synchronization between the various processing nodes is also controlled by the message 

as a carrier. InterUnit consists of routing component, DataUnit interface, ProcUnit 

interface and network interface. InterUnit is used to connect DataUnit, ProcUnit and other 

on-chip network interfaces for processing cores to enable data and message interaction 

between different nodes. Inside a single processing core, InterUnit also acts as a channel 

between the ProcUnit and the DataUnit . It is responsible for sending data or messages 

from the DataUnit to the ProcUnit for processing, and writing the results back to the 

DataUnit to complete the related operations of the object.  
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Figure 8. 

Hierarchical Group Shared Memory Design 

CONCLUSION 

This paper introduces the basic characteristics of the base three multi-core architecture, 

including its unique base three network topology, kernel micro-architecture and 

hierarchical memory architecture. These characteristics make the base three multi-core 

architecture different from the existing traditional architecture, and become a special 

architecture with the underlying full interconnection, the number of links between the 

layers decreasing step by step, and the locality of the network operation is very obvious. 
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