

THE ASIAN BULLETIN OF BIG DATA MANAGMENT

Vol. 4. Issue 1 (2024)

https://doi.org/10.62019/abbdm.v4i1.110

156

Leveraging Scratchpad Memory in a Hierarchical Architecture for

Multicore
Kavita Tabbassum, Shahnawaz Farhan Khahro, Saima Shaikh, Farah Naveen Issani, Suhni Abbasi, Hina Chandio *

Chronicle Abstract
Article history

Received: February 12, 2024

Received in the revised format: Feb 24,

2024

Accepted: Feb 26, 2024

Available online: March 1, 2024

This paper proposes a novel architecture for multi-core processors,

tailored for high-performance parallel computing. The architecture is

founded on the innovative notion that complex problems can be

decomposed into three relatively independent sub-problems: data

processing, data management, and data communication. It features

a grid of small, programmable processing units intricately connected

to their three neighbouring units, forming a physically scalable and

fractal environment. With flexibility, modularity, and scalability as

focal points, this architecture aims to address the anticipated real-

time signal processing demands in future telecommunication and

multimedia systems. One notable aspect of the proposed

architecture is its direct support for object-oriented features at the

hardware level. Adopting a hybrid approach with Scratchpad

Memory (SPM) combined with Cache in the on-chip memory

hierarchy enhances performance and adaptability for sophisticated

multi-core applications. The study highlights SPM management and

introduces a dynamic data management framework. Unlike

traditional SPM allocation methods relying on compiler or profiling

knowledge, the proposed approach leverages random sampling

and probability theory to predict hot-access data during runtime. This

dynamic memory access pattern guides SPM allocation, ensuring

optimal utilization of SPM's advantages in access speed and energy

consumption, complemented by hardware support from DataUnit.

This paper presents a paradigm shift in multi-core processor

architecture, offering advanced features to meet the evolving

requirements of parallel computing, making it well-suited for future

telecommunication and multimedia systems.

Kavita Tabbassum, Saima Shaikh,

Farah Naveen Issani, Suhni Abbasi

and Hina Chandio are currently

affiliated with the Department of

Information Technology Center, Sindh

Agricultural University Tandojam,

70060, Pakistan.

Email: kavita@sau.edu.pk

Email: ss2kcs@gmail.com

Email: Farahnaveenissani@gmail.com

Email: suhni.abbasi@sau.edu.pk

Email: hinashafi@sau.edu.pk

Shahnawaz Farhan Khahro, is

currently affiliated with the Energy

Department, Govt. of Sindh.

Email: shahnawazfarhan@gmail.com

*Corresponding Author

Keywords: Scratchpad memory, Dynamic memory management, Multi-core, CMP Set.
 © 2024 Asian Academy of Business and social science research Ltd Pakistan. All rights reserved

INTRODUCTION

The objective of this paper is to introduce a innovative architecture tailored for multi-core

processors, aimed at enabling high-performance parallel computing. The proposed

architecture is significant due to its innovative approach to addressing the complex

challenges inherent in parallel computing tasks. Traditional multi-core architectures often

struggle to efficiently manage data processing, data management, and data

communication simultaneously. This paper seeks to overcome these challenges by

presenting a novel architecture that decomposes complex problems into three relatively

independent sub-problems. By providing a grid of small, programmable processing units

intricately connected to their neighboring units, this architecture offers scalability and

mailto:kavita@sau.edu.pk
mailto:ss2kcs@gmail.com
mailto:Farahnaveenissani@gmail.com
mailto:suhni.abbasi@sau.edu.pk
mailto:hinashafi@sau.edu.pk
mailto:shahnawazfarhan@gmail.com

Leveraging Scratchpad Memory Tabbassum, K. et al. (2024)

157

flexibility crucial for meeting the demands of modern computing applications. Moreover,

the proposed architecture directly supports object-oriented features at the hardware

level, enhancing performance and adaptability for sophisticated multi-core

applications. By combining Scratchpad Memory (SPM) with Cache in the on-chip

memory hierarchy, the architecture achieves optimal utilization of resources, paving the

way for efficient parallel computing. It is a new type of architecture proposed based on

the development trend of architecture in recent years. This paper mainly introduces

several characteristics and focuses on the SPM-based hierarchical memory architecture

based on the on-chip SPM management mechanism. In summary, the objective of this

paper is to introduce an advanced multi-core processor architecture capable of

addressing the evolving requirements of parallel computing. Its significance lies in its

ability to offer unprecedented flexibility, modularity, and scalability, making it well-suited

for future telecommunication and multimedia systems.

LITERATURE REVIEW

The proposed architecture can find application in various real-world scenarios where

high-performance parallel computing is essential. Here are some specific examples: In

telecommunications systems, in telecommunications, real-time signal processing is

crucial for tasks like signal modulation, demodulation, and error correction. The proposed

architecture's ability to handle complex data processing tasks with high efficiency makes

it suitable for telecommunication systems requiring low-latency and high-throughput

processing. Multimedia Processing: Multimedia applications such as video encoding,

decoding, and image processing demand substantial computational resources. The

architecture's support for parallel computing enables efficient handling of these tasks,

leading to faster processing times and improved multimedia quality. Scientific

Computing: Scientific simulations and computations often involve processing large

datasets and running complex algorithms.

The proposed architecture's scalability and flexibility make it well-suited for scientific

computing applications, allowing researchers to perform simulations and analyses more

efficiently. Data Analytics: With the proliferation of big data, there is a growing need for

high-performance computing architectures to analyze large datasets quickly. The

proposed architecture's parallel processing capabilities can accelerate data analytics

tasks, enabling businesses to extract valuable insights from their data in a timely manner.

Artificial Intelligence and Machine Learning: AI and machine learning algorithms often

require intensive computational resources to train models and process large datasets.

The proposed architecture's support for parallel computing can significantly speed up

the training process and improve the performance of AI applications.

Overall, the proposed architecture's versatility and efficiency make it suitable for a wide

range of real-world applications that require high-performance parallel computing

capabilities. The 2D-Mesh stands out as the most mature on-chip network structure, as

illustrated in Figure 2.1 (Deng et al., 2009). Its proven track record and suitability make it

a preferred interconnection method for on-chip network topology (Egger, Lee, & Shin,

2008). Low-dimensional networks like the 2D-Mesh offer certain advantages, including

reduced communication delays and blocking probabilities compared to high-

dimensional networks (Deng, Ji, & Shi, 2009; Takase, Tomiyama, & Takada, 2010).

The Asian Bulletin of Big Data Management Data Science 4(1), 156-167

Consequently, in multi-core chip design, low-dimensional networks are frequently chosen

for interconnecting processing components (Gauthier, Ishihara, & Takada, 2010). Multi-

core interconnect structures have been a focal point in research, driven by the shift from

Chip Multiprocessors (CMPs) to multi-core and many-core configurations. While the bus

structure has historically been popular due to its simplicity and ease of implementation

(Marongiu & Benini, 2010), it is now facing limitations in bandwidth and signal integration

as technology advances. This has led to a shift towards network-based interconnection

methods, known as Network-on-Chip (NoC) architectures.

The 2D-Mesh, depicted in Figure 2.1, has emerged as a mature and suitable choice for

on-chip network topology (Zuo, Qi, & Jiaxing, 2008; Zuo, Qi, & Jiaxin, 2009; Liu, Ji, Li, et al.,

2009). By enhancing communication bandwidth and efficiency among nodes within

basic groups, internal interconnections greatly improve communication efficiency.

However, the full interconnection of nodes within each basic group of the 2D-Mesh can

incur high costs, as depicted in Fig. 2.2. To address scalability challenges, the size of full

interconnections is gradually reduced in upper-level interconnections, leading to

diminished scalability with increasing core count.

Figur1.

2D-Mesh

Structure

Figure 2.

2D-Mesh Structure Full

Leveraging Scratchpad Memory Tabbassum, K. et al. (2024)

159

𝑁𝑘+1 =⋃𝐹𝑖(𝑁𝑘)

3

𝑖=1

………………… . . ……………… . (2.1)

 K=3

 K=1 K=2
 K=0

Figure 3.

Schematic diagram of iterative network at k=0, 1, 2, and 3

FORMAL MODEL OF NETWORK

Proposed architecture adopts a basic three-layered on-chip network structure to solve

the problem of full interconnection between the underlying nodes. The structure has the

advantages of simple topology, low degree of nodes, and obvious hierarchy. The

topological structure of the three-layered on-chip network is shown in Figure 2.3. It is

assumed that the iterative function family of the structure is 123{,,}IFSFFF, and the 1-layer

interconnection network is regarded as the network after 1 iteration (1)N. , () Nk

represents the k-layer network obtained after k iterations, then the interconnection

network construction process can be expressed as (Takase, Tomiyama, & Takada, 2010;

Catthoor et al., 2018).

The network topology is a low-level, fully interconnected structure in which the basic

building blocks are a group of three nodes. The fully interconnected structure is called a

super node. By replacing the nodes in the topology with super nodes, a larger base triple

topology can be obtained. Figure 2.3 shows the 1-node, 3-node, 9-node, and 27-node

base three topology structures obtained by the basic components after 0, 1, 2, and 3

replacements.

Features of the Interconnect Network

The static metrics of the general network mainly include: the degree of the network, the

total number of links, the width of the section and the diameter of the network. From the

perspective of VLSI layout and routing, low-dimensional networks have advantages in

implementation compared to high-dimensional networks. Because low-dimensional

networks have a certain online width, smaller communication delays and blocking

probabilities can be obtained than high-dimensional networks (Wasly, 2018; Alvarez et

The total number of nodes after

layer iteration is:N=3k

The Asian Bulletin of Big Data Management Data Science 4(1), 156-167

al., 2015). Therefore, in the design of multi-core chips, low-dimensional networks are often

used for interconnection between processing components. Table 2.1 shows the

comparison of several common interconnected network structures in terms of node

degree, total number of links, cross-sectional width, and network diameter, where N

represents the number of network nodes.

According to the calculation formula in the above table, it can be concluded that as

the number of nodes increases, the changes of various indicators on the network on the

chip. It is easy to see that the base three network nodes are the smallest among the

nodes of all networks, which also reduces the required entries for the implementation of

routers in the base three network. In Table 2.1, several metrics are compared for different

interconnected network structures, including degree, total number of links, split width,

and network diameter. These metrics are essential for evaluating the performance and

efficiency of on-chip network structures.

Degree: The degree of a network refers to the number of connections or edges each

node has. In the context of on-chip networks, a lower degree indicates a less complex

topology with fewer connections per node. This metric is crucial because a lower degree

typically implies simpler routing algorithms, reduced hardware complexity, and

potentially lower power consumption.

Total Number of Links: This metric represents the overall number of connections or links

within the network. A lower total number of links implies a more efficient use of resources

and potentially lower hardware costs. It also affects the complexity of routing algorithms

and the overall scalability of the network.

Split Width: The split width refers to the number of links crossing a cut in the network. In on-

chip networks, split width is crucial for determining the efficiency of communication

between different sections or modules of the chip. A smaller split width implies faster

communication and reduced latency between components.

Network Diameter: The network diameter is the maximum distance or number of hops

between any pair of nodes in the network. A smaller network diameter indicates shorter

communication paths and lower latency, which are critical for real-time applications and

overall system performance.

These metrics are essential for evaluating the suitability of on-chip network structures for

multi-core processors. Lower values for degree, total number of links, split width, and

network diameter generally indicate more efficient and scalable network architectures,

which are crucial for meeting the performance requirements of modern computing

applications. Therefore, comparing these metrics helps researchers and designers

choose the most appropriate network structure for their specific use case, considering

factors such as performance, power consumption, and cost.

Table 1.

Comparison of Static Metrics for Several Interconnected Networks
Network Type Interconnect Network Static Metric

 Degree Total number of links Split Width Network Diameter

Base three Network 3 3(N-1)/2 log3 N 2log
3

N – 1

Two-Dimensional Grid 4 2 (N - √𝑁) √𝑁 2 (√𝑁 – 1)

Leveraging Scratchpad Memory Tabbassum, K. et al. (2024)

161

Two-Dimensional Ring

Network
4 2N 2√𝑁 2 (√𝑁 / 2)

Hypercube log2 N (N × log2 N) / 2 N/2

log2 N

Figure 2.4(a)(b)(c)(d) and (e) and Figure 2.5(a)(b)(c)(d) and (e) show the trends in the

number of links and network diameters of various networks as the number of nodes

produces. As can be seen from Figure 2.4, in the case of the same number of nodes, the

number of links in the base three network is the smallest among all network topologies,

and the number of links directly affects the complexity of the layout and routing in

hardware implementation. Hardware overhead. The comparison of the network

diameters in Figure 2.5 shows that the hypercube has the smallest network diameter

when the number of nodes is the same, but because the node degree of the hypercube

grows logarithmically with the number of nodes (2logN), it is not suitable for building on-

chip. It is easy to see that in the case of a small number of nodes (N <140), the network

diameter of the base three network is smaller than that of the two-dimensional grid. As

the network scale expands, the network diameter exceeds the network diameter of the

two-dimensional grid.

ProcUnit

(a)

(b)

(c)

(d)

0

100

200

300

400

0

2
0

4
0

6
0

8
0

1
0

0

1
2

0

1
4

0

1
6

0

1
8

0

2
0

0

N
o

.o
f.

Li
n

ks

No.of. Nodes

Base Three Network

0

100

200

300

400

0

2
0

4
0

6
0

8
0

1
0

0

1
2

0

1
4

0

1
6

0

1
8

0

2
0

0

N
o

. o
f.

 L
in

ks

No. of Nodes

2-Dimensional Grid

0

100

200

300

400

500

0

2
0

4
0

6
0

8
0

1
0

0

1
2

0

1
4

0

1
6

0

1
8

0

2
0

0

N
o

.o
f.

Li
n

ks

No. of.Nodes

2-Dimensional Ring Network

0

200

400

600

800

0

2
0

4
0

6
0

8
0

1
0

0

1
2

0

1
4

0

1
6

0

1
8

0

2
0

0

N
o

.o
f.

 L
in

ks

No. of. Nodes

Hypercube

The Asian Bulletin of Big Data Management Data Science 4(1), 156-167

Simplified Description: Think of ProcUnit as the brain of the processor. It's responsible for

processing data and executing tasks, much like how your brain processes information

and performs actions.Concrete Example: Imagine ProcUnit as a chef in a kitchen. The

chef receives orders (data) and performs tasks like chopping vegetables, cooking dishes,

and serving meals. Similarly, ProcUnit receives data and performs operations like

calculations, logic tasks, and data manipulation. ProcUnit corresponds to the function or

method in the object and is mainly responsible for processing the data. Its basic functions

are similar to those of a normal CPU, used to run normal instructions or to manipulate the

behavior of objects by processing messages between objects. In addition to the

functions of the arithmetic logic unit and control unit in the usual processor, ProcUnit can

also directly support some of the more commonly used object-oriented instructions

(Egger, Lee, & Shin, 2008). ProcUnit achieves the purpose of changing the state of an

object by running a method in the object to modify the data corresponding to the

object.

Figure 4.

Trend of Link Numbers in Network over Time

0

1000

0 20 40 60 80 100 120 140
160

180
200

N
o

.o
f.

 L
in

k
s TriBA 2-Dimensional Grid 2-Dimensional Ring Network Hypercube

(a)

(b)

(c) (d)

0

10

20

30

0

2
0

4
0

6
0

8
0

1
0

0

1
2

0

1
4

0

1
6

0

1
8

0

2
0

0

D
ai

m
e

te
r

G
ro

w
th

No.of. Nodes

Base three Network

0

10

20

30

0

2
0

4
0

6
0

8
0

1
0

0

1
2

0

1
4

0

1
6

0

1
8

0

2
0

0

D
ai

m
e

te
r

G
ro

w
th

No.of. Nodes

2-Dimensional Grid

Leveraging Scratchpad Memory Tabbassum, K. et al. (2024)

163

Figure 5.

Trend of Network Diameter in the Proposed Network over Time

Figure 6.

Schematic Diagram of the Internal Structure of a Single Node.

0

5

10

15

20

0

2
0

4
0

6
0

8
0

1
0

0

1
2

0

1
4

0

1
6

0

1
8

0

2
0

0

D
ai

m
e

te
r

G
ro

w
th

No. of. Nodes

2-Dimensional Ring Network

0

2

4

6

8

10

0

2
0

4
0

6
0

8
0

1
0

0

1
2

0

1
4

0

1
6

0

1
8

0

2
0

0

D
ai

m
e

te
r

G
ro

w
th

No.of. Nodes

Hypercube

0

5

10

15

20

25

30

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

1
1

0

1
2

0

1
3

0

1
4

0

1
5

0

1
6

0

1
7

0

1
8

0

1
9

0

2
0

0

D
ai

m
e

te
r

G
ro

w
th

No of Nodes

TriBA

2-Dimensional Grid

2-Dimensional Ring Network

Hypercube

(e)

The Asian Bulletin of Big Data Management Data Science 4(1), 156-167

ProcUnit and DataUnit are fundamental components of our proposed architecture for

multi-core processors. Let's break down their descriptions into simpler terms:

DATA UNIT

Simplified Description: DataUnit is like the memory manager of the processor. It handles

the storage and retrieval of data, ensuring that information is accessible when needed.

Concrete Example: Think of DataUnit as a librarian in a library. The librarian manages

books (data) by organizing them on shelves, keeping track of their locations, and

retrieving them when requested. Similarly, DataUnit manages data by allocating memory

space, organizing data storage, and facilitating data access for the processor. By

simplifying ProcUnit and DataUnit using these analogies, it becomes easier to understand

their roles and how they contribute to the overall functioning of our multi-core processor

architecture. DataUnit is mainly responsible for the memory management of data. Its

basic functions can be summarized as follows:

(1) Provide an efficient object access mechanism. In the object-oriented processor, the

object replaces the traditional data into the individual stored in the memory, so it is

necessary to design a special hardware and memory protocol to support the access of

the object. In the object store, each object exists in the form of a contiguous space in

memory. When accessing an object, an object reference is needed to identify the

access object, and the data field contained in the object is usually added by the object

reference plus the object data offset. The form is accessed. Corresponding to the virtual

memory technology used in the traditional process-oriented processor, in the object-

oriented processor, the mapping between the object reference and the physical

address needs to be implemented by establishing an object table. DataUnit is used within

a single Cell to map such virtual objects to physical addresses. In the work of the students

before the group, the object memory technology has been discussed in depth (Takase,

Tomiyama, & Takada, 2010; Deng, Ji, Li, Zuo, & Shi, 2011).

(2) Dynamic Management of SPM. The program needs to dynamically apply for the

memory space of the corresponding size during the running process, and release the

space after a certain time. In proposed architecture, each processing core has a certain

amount of on-chip SPM resources (Tabbassum, Talpur, Narejo, & Laghari, 2019). The

allocation and release of local SPM space is also one of the main functions of DataUnit.

DataUnit's support for SPM allocation is mainly reflected in the hardware support of virtual

memory management and SPM runtime management. In terms of virtual memory

management, it supports a variety of granular page sizes. You can adjust the granularity

of data blocks involved in SPM dynamic management as needed, and update the virtual

and real address mapping according to the change of physical addresses before and

after SPM allocation. Address redirection; in terms of SPM runtime management, DataUnit

mainly provides corresponding hardware support to complete efficient SPM runtime

dynamic management.

In order to achieve efficient support for the runtime SPM adaptive algorithm, the

corresponding hardware components are added to the DataUnit to assist the runtime

system for efficient SPM management. For example, in the random sampling SPM

allocation algorithm, the Memory Reference Sampling Unit (MRSU) is integrated into the

Leveraging Scratchpad Memory Tabbassum, K. et al. (2024)

165

DataUnit to sample the core data; in the SPM management strategy based on the

access count, the access accumulator is added in the DataUnit. (ACC) Counts memory

accesses. This method of dynamic management of SPM through software and hardware

coordination ensures high runtime efficiency. This paper attempts to use the hardware

and software synergy method to dynamically manage the application and release of

SPM. By using the hardware provided by DataUnit, the core working set is predicted at

runtime and the SPM is managed efficiently. Provide the function of sending and

receiving messages. DataUnit itself can also be considered as having a pumping Objects

like functions can provide a certain amount of buffer and support data transmission and

reception (Gao, 2014; Javaid, Zafar, Awais, & Shah, 2017). When the InterUnit needs to

forward data to the data store in the local Cell, the DataUnit is responsible for receiving

the data and assisting in the completion of the data memory function; when the data in

the DataUnit needs to be forwarded through the InterUnit, it will also provide the local

cache to be sent data. Perform a temporary memory to be sent by InterUnit at the

appropriate time.

Figure 7.

Inter-Unit Structure Diagram

InterUnit

As shown in Figure 2.7, InterUnit is mainly responsible for the interaction and forwarding of

data or messages. The objects interact through messages, and the interaction and

synchronization between the various processing nodes is also controlled by the message

as a carrier. InterUnit consists of routing component, DataUnit interface, ProcUnit

interface and network interface. InterUnit is used to connect DataUnit, ProcUnit and other

on-chip network interfaces for processing cores to enable data and message interaction

between different nodes. Inside a single processing core, InterUnit also acts as a channel

between the ProcUnit and the DataUnit . It is responsible for sending data or messages

from the DataUnit to the ProcUnit for processing, and writing the results back to the

DataUnit to complete the related operations of the object.

The Asian Bulletin of Big Data Management Data Science 4(1), 156-167

Figure 8.

Hierarchical Group Shared Memory Design

CONCLUSION

This paper introduces the basic characteristics of the base three multi-core architecture,

including its unique base three network topology, kernel micro-architecture and

hierarchical memory architecture. These characteristics make the base three multi-core

architecture different from the existing traditional architecture, and become a special

architecture with the underlying full interconnection, the number of links between the

layers decreasing step by step, and the locality of the network operation is very obvious.

DECLARATIONS

Acknowledgement: We appreciate the generous support from all the supervisors and their

different affiliations.

Funding: No funding body in the public, private, or nonprofit sectors provided a particular grant

for this research.

Availability of data and material: In the approach, the data sources for the variables are

stated.

Authors' contributions: Each author participated equally to the creation of this work.

Conflicts of Interests: The authors declare no conflict of interest.

Consent to Participate: Yes

Consent for publication and Ethical approval: Because this study does not include human or

animal data, ethical approval is not required for publication. All authors have given their

consent.

REFERENCES

Alvarez, L., Vilanova, L., Moret´o, M., Casas, M., Gonz`alez, M., & Martorell, X., et al. (2015).

Coherence Protocol for Transparent Management of Scratchpad Memories in Shared

Memory Many-core Architectures. In Proceedings of the 42nd Annual International

Symposium on Computer Architecture, ISCA ’15 (pp. 720–732). ACM.

Anzt, H., Hahn, T., Heuveline, V., & Rocker, B. (2010). GPU Accelerated Scientific Computing:

Evaluation of the NVIDIA Fermi Architecture; Elementary Kernels and Linear Solvers. EMCL

Preprint Series.

Catthoor, F., Hartmann, M., Gomez, J. I., Tenllado, C., Xydis, S., Rodrigo, J. S., ... & Soudris, D. (2018).

Memory Structure Comprising Scratchpad Memory. United States patent application US

15/726,749.

Deng, N., Ji, W., & Shi, F. (2009). A novel adaptive scratchpad memory management strategy. In

The 15th IEEE International Conference on Embedded and Real-Time Computing Systems

and Applications (pp. 236–241).

Leveraging Scratchpad Memory Tabbassum, K. et al. (2024)

167

Deng, N., Ji, W., Li, J., Zuo, Q., & Shi, F. (2011). Core Working Set Based Scratchpad Memory

Management. IEICE Transactions on Information and Systems, 94(2), 274–285.

Egger, B., Lee, J., & Shin, H. (2008). Dynamic scratchpad memory management for code in

portable systems with an MMU. Transactions on Embedded Computing Systems, 7(2), 1–

38.

Egger, B., Lee, J., & Shin, H. (2008). Scratchpad memory management in a multitasking

environment. In EMSOFT (pp. 265–274).

Gao, Y. (2014). Automated Scratchpad Mapping and Allocation for Embedded Processors. Ph.D.

Thesis, University of South Carolina - Columbia.

Gauthier, L., Ishihara, T., & Takada, H. (2010). Stack Frames Placement in Scratch-Pad Memory for

Energy Reduction of Multi-task Applications. In the Workshop on Synthesis and System

Integration of Mixed Technologies (pp. 171-176).

Javaid, Q., Zafar, A., Awais, M., & Shah, M. A. (2017). Cache Memory: An Analysis on Replacement

Algorithms and Optimization Techniques. Mehran University Research Journal of

Engineering & Technology, 36(4), 10.

Liu, M., Ji, W., Li, J., et al. (2009). Storage Architecture for an On-chip Multi-core Processor. In 12th

Euromicro Conference on Digital System Design: Architecture, Methods and Tools (pp. 263-

270).

Marongiu, A., & Benini, L. (2010). An OpenMP Compiler for Efficient Use of Distributed Scratchpad

Memory in MPSoCs. IEEE Transactions on Computers.

Singh, A. K., Geetha, K., & Ramasubramanian, N. V. (2016). Efficient Utilization of Shared Caches

in Multicore. Arab Journal of Science and Engineering, 41, 5169–5179.

Suhendra, V., Roychoudhury, A., & Mitra, T. (2008). Scratchpad allocation for concurrent

embedded software. In CODES + ISSS (pp. 37–42).

Takase, H., Tomiyama, H., & Takada, H. (2010). Partitioning and allocation of scratch-pad memory

for priority-based preemptive multi-task systems. In Proceedings of the Conference on

Design, Automation and Test in Europe, DATE 2010 (pp. 1124–1129). European Design and

Automation Association, Leuven.

Tabbassum, K., Talpur, S., Narejo, S., & Laghari, N. (2019). Management of Scratchpad Memory

Using Programming Techniques. Mehran University Research Journal of Engineering &

Technology, 38(2), 305-312.

Wasly, S. (2018). Scratchpad Memory Management for Multicore Real-Time Embedded Systems.

Zuo, W., Qi, Z., & Jiaxin, L. (2009). Triplet-based topology for on-chip networks. WSEAS Transactions

on Computers, 8(3), 516-525.

Zuo, W., Qi, Z., & Jiaxing, L. (2008). Traffic Analysis for Triplet-Based Networks Based on Full-System

Simulation. In International Symposium on Information Science and Engineering (pp. 121-

124).

2024 by the authors; Asian Academy of Business and social science research Ltd Pakistan. This is an open

access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license

(http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/licenses/by/4.0/

