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This paper proposes a novel architecture for multi-core processors,
tailored for high-performance parallel computing. The architecture is
founded on the innovative notion that complex problems can be
decomposed into three relatively independent sub-problems: data
processing, data management, and data communication. It features
a grid of small, programmable processing units intricately connected
to their three neighbouring units, forming a physically scalable and
fractal environment. With flexibility, modularity, and scalability as
focal points, this architecture aims to address the anficipated real-
fime signal processing demands in future telecommunication and
mulfimedia systems. One notable aspect of the proposed
architecture is its direct support for object-oriented features at the
hardware level. Adopting a hybrid approach with Scratchpad
Memory (SPM) combined with Cache in the on-chip memory
hierarchy enhances performance and adaptability for sophisticated
multi-core applications. The study highlights SPM management and
infroduces a dynamic data management framework. Unlike
fraditional SPM allocation methods relying on compiler or profiling
knowledge, the proposed approach leverages random sampling
and probability theory to predict hot-access data during runtime. This
dynamic memory access pattern guides SPM allocation, ensuring
optimal utilization of SPM's advantages in access speed and energy
consumption, complemented by hardware support from Dataunit.
This paper presents a paradigm shift in mulli-core processor
architecture, offering advanced features to meet the evolving
requirements of parallel computing, making it well-suited for future
telecommunication and multimedia system:s.

Keywords: Scratchpad memory, Dynamic memory management, Multi-core, CMP Set.
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INTRODUCTION

The objective of this paperis to infroduce a innovative architecture tailored for multi-core
processors, aimed at enabling high-performance parallel computing. The proposed
architecture is significant due to its innovative approach to addressing the complex
challenges inherent in parallel computing tasks. Traditional multi-core architectures often
struggle to efficiently manage data processing, data management, and data
communication simultaneously. This paper seeks to overcome these challenges by
presenting a novel architecture that decomposes complex problems into three relatively
independent sub-problems. By providing a grid of small, programmable processing units
infricately connected to their neighboring units, this architecture offers scalability and
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flexibility crucial for meeting the demands of modern computing applications. Moreover,
the proposed architecture directly supports object-oriented features at the hardware
level, enhancing performance and adaptability for sophisticated multi-core
applications. By combining Scratchpad Memory (SPM) with Cache in the on-chip
memory hierarchy, the architecture achieves optimal utilization of resources, paving the
way for efficient parallel computing. It is a new type of architecture proposed based on
the development trend of architecture in recent years. This paper mainly infroduces
several characteristics and focuses on the SPM-based hierarchical memory architecture
based on the on-chip SPM management mechanism. In summary, the objective of this
paper is to infroduce an advanced multi-core processor architecture capable of
addressing the evolving requirements of parallel computing. Its significance lies in its
ability to offer unprecedented flexibility, modularity, and scalability, making it well-suited
for future telecommunication and multimedia system:s.

LITERATURE REVIEW

The proposed architecture can find application in various real-world scenarios where
high-performance parallel computing is essential. Here are some specific examples: In
telecommunications systems, in telecommunications, real-time signal processing is
crucial for tasks like signal modulation, demodulation, and error correction. The proposed
architecture's ability to handle complex data processing tasks with high efficiency makes
it suitable for telecommunication systems requiring low-latency and high-throughput
processing. Multimedia Processing: Multimedia applications such as video encoding,
decoding, and image processing demand substantial computational resources. The
architecture's support for parallel computing enables efficient handling of these tasks,
leading to faster processing times and improved multimedia quality. Scientific
Computing: Scientific simulations and computations often involve processing large
datasets and running complex algorithms.

The proposed architecture's scalability and flexibility make it well-suited for scientific
computing applications, allowing researchers to perform simulations and analyses more
efficiently. Data Analytics: With the proliferation of big data, there is a growing need for
high-performance computing architectures to analyze large datasets quickly. The
proposed architecture's parallel processing capabilities can accelerate data analytics
tasks, enabling businesses to extract valuable insights from their data in a timely manner.
Artificial Inteligence and Machine Learning: Al and machine learning algorithms often
require intensive computational resources to train models and process large datasefts.
The proposed architecture's support for parallel computing can significantly speed up
the training process and improve the performance of Al applications.

Overall, the proposed architecture's versatility and efficiency make it suitable for a wide
range of real-world applications that require high-performance parallel computing
capabilities. The 2D-Mesh stands out as the most mature on-chip network structure, as
illustrated in Figure 2.1 (Deng et al., 2009). Its proven track record and suitability make it
a preferred interconnection method for on-chip network topology (Egger, Lee, & Shin,
2008). Low-dimensional networks like the 2D-Mesh offer certain advantages, including
reduced communication delays and blocking probabilities compared to high-
dimensional networks (Deng, Ji, & Shi, 2009; Takase, Tomiyama, & Takada, 2010).
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Consequently, in multi-core chip design, low-dimensional networks are frequently chosen
for interconnecting processing components (Gauthier, Ishihara, & Takada, 2010). Multi-
core interconnect structures have been a focal point in research, driven by the shift from
Chip Multiprocessors (CMPs) to multi-core and many-core configurations. While the bus
structure has historically been popular due to its simplicity and ease of implementation
(Marongiu & Benini, 2010), it is now facing limitations in bandwidth and signal integration
as technology advances. This has led to a shift fowards network-based interconnection
methods, known as Network-on-Chip (NoC) architectures.

The 2D-Mesh, depicted in Figure 2.1, has emerged as a mature and suitable choice for
on-chip network topology (Zuo, Qi, & Jiaxing, 2008; Zuo, Qi, & Jiaxin, 2009; Liu, Ji, Li, et al.,
2009). By enhancing communication bandwidth and efficiency among nodes within
basic groups, internal interconnections greatly improve communication efficiency.
However, the full interconnection of nodes within each basic group of the 2D-Mesh can
incur high costs, as depicted in Fig. 2.2. To address scalability challenges, the size of full
interconnections is gradually reduced in upper-level interconnections, leading to
diminished scalability with increasing core count.

Figur1.
2D-Mesh
Structure

Figure 2.
2D-Mesh Structure Full
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3

i=1

The total number of nodes after
layer iteration is:N=3k K=3

Figure 3.
Schematic diagram of iterative network at k=0, 1, 2, and 3

FORMAL MODEL OF NETWORK

Proposed architecture adopts a basic three-layered on-chip network structure to solve
the problem of full interconnection between the underlying nodes. The structure has the
advantages of simple topology, low degree of nodes, and obvious hierarchy. The
topological structure of the three-layered on-chip network is shown in Figure 2.3. It is
assumed that the iterative function family of the structure is 123{, }IFSFFF, and the 1-layer
interconnection network is regarded as the network after 1 iteration (1)N. , () Nk
represents the k-layer network obtained after k iterations, then the interconnection
network construction process can be expressed as (Takase, Tomiyama, & Takada, 2010;
Catthoor et al., 2018).

The network topology is a low-level, fully interconnected structure in which the basic
building blocks are a group of three nodes. The fully interconnected structure is called a
super node. By replacing the nodes in the topology with super nodes, a larger base friple
topology can be obtained. Figure 2.3 shows the 1-node, 3-node, 9-node, and 27-node
base three topology structures obtained by the basic components after 0, 1, 2, and 3
replacements.

Features of the Interconnect Network

The static meftrics of the general network mainly include: the degree of the network, the
total number of links, the width of the section and the diameter of the network. From the
perspective of VLSI layout and routing, low-dimensional networks have advantages in
implementation compared to high-dimensional networks. Because low-dimensional
networks have a certain online width, smaller communication delays and blocking
probabilities can be obtained than high-dimensional networks (Wasly, 2018; Alvarez et
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al., 2015). Therefore, in the design of multi-core chips, low-dimensional networks are often
used for interconnection between processing components. Table 2.1 shows the
comparison of several common interconnected network structures in terms of node
degree, total number of links, cross-sectional width, and network diameter, where N
represents the number of network nodes.

According to the calculation formula in the above table, it can be concluded that as
the number of nodes increases, the changes of various indicators on the network on the
chip. It is easy to see that the base three network nodes are the smallest among the
nodes of all networks, which also reduces the required entries for the implementation of
routers in the base three network. In Table 2.1, several metrics are compared for different
interconnected network structures, including degree, total number of links, split width,
and network diameter. These metrics are essential for evaluating the performance and
efficiency of on-chip network structures.

Degree: The degree of a network refers to the number of connections or edges each
node has. In the context of on-chip networks, a lower degree indicates a less complex
topology with fewer connections per node. This metric is crucial because a lower degree
typically implies simpler routing algorithms, reduced hardware complexity, and
potentially lower power consumption.

Total Number of Links: This metric represents the overall number of connections or links
within the network. A lower total number of links implies a more efficient use of resources
and potentially lower hardware costs. It also affects the complexity of routing algorithms
and the overall scalability of the network.

Split Width: The split width refers to the number of links crossing a cut in the network. In on-
chip networks, split width is crucial for determining the efficiency of communication
between different sections or modules of the chip. A smaller split width implies faster
communication and reduced latency between components.

Network Diameter: The network diameter is the maximum distance or number of hops
between any pair of nodes in the network. A smaller network diameter indicates shorter
communication paths and lower latency, which are critical for real-time applications and
overall system performance.

These metrics are essential for evaluating the suitability of on-chip network structures for
multi-core processors. Lower values for degree, total number of links, split width, and
network diameter generally indicate more efficient and scalable network architectures,
which are crucial for meeting the performance requirements of modern computing
applications. Therefore, comparing these meftrics helps researchers and designers
choose the most appropriate network structure for their specific use case, considering
factors such as performance, power consumption, and cost.

Table 1.
Comparison of Static Metrics for Several Interconnected Networks
Network Type Interconnect Network Static Metric
Degree Total number of links ~ Split Width Network Diameter
Base three Network 3 3(N-1)/2 logs N 2loggN — ]

Two-Dimensional Grid 4 2 (N-VN) VN 2 (VN -1)
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Two-Dimensional  Ring
Network 4 2N 2VN 2 (VN /2)
Hypercube log2N (Nxlogz2N) /2 N/2 log2N

Figure 2.4(a)(b)(c)(d) and (e) and Figure 2.5(a)(b)(c)(d) and (e) show the trends in the
number of links and network diameters of various networks as the number of nodes
produces. As can be seen from Figure 2.4, in the case of the same number of nodes, the
number of links in the base three network is the smallest among all network topologies,
and the number of links directly affects the complexity of the layout and routing in
hardware implementation. Hardware overhead. The comparison of the network
diameters in Figure 2.5 shows that the hypercube has the smallest network diameter
when the number of nodes is the same, but because the node degree of the hypercube
grows logarithmically with the number of nodes (2logN), it is not suitable for building on-
chip. It is easy to see that in the case of a small number of nodes (N <140), the network
diameter of the base three network is smaller than that of the two-dimensional grid. As
the network scale expands, the network diameter exceeds the network diameter of the
two-dimensional grid.

ProcUnit
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Simplified Description: Think of ProcUnit as the brain of the processor. It's responsible for
processing data and executing tasks, much like how your brain processes information
and performs actions.Concrete Example: Imagine ProcUnit as a chef in a kitchen. The
chefreceives orders (data) and performs tasks like chopping vegetables, cooking dishes,
and serving meals. Similarly, ProcUnit receives data and performs operations like
calculations, logic tasks, and data manipulation. ProcUnit corresponds to the function or
method in the object and is mainly responsible for processing the data. Its basic functions
are similar to those of a normal CPU, used to run normal instructions or to manipulate the
behavior of objects by processing messages between objects. In addition to the
functions of the arithmetic logic unit and control unit in the usual processor, ProcUnit can
also directly support some of the more commonly used object-oriented instructions
(Egger, Lee, & Shin, 2008). ProcUnit achieves the purpose of changing the state of an
object by running a method in the object to modify the data corresponding to the
object.
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ProcUnit and DataUnit are fundamental components of our proposed architecture for
multi-core processors. Let's break down their descriptions into simpler terms:

DATA UNIT

Simplified Description: DataUnit is like the memory manager of the processor. It handles
the storage and retrieval of data, ensuring that information is accessible when needed.
Concrete Example: Think of DataUnit as a librarian in a library. The librarian manages
books (data) by organizing them on shelves, keeping track of their locations, and
retrieving them when requested. Similarly, DataUnit manages data by allocating memory
space, organizing data storage, and facilitating data access for the processor. By
simplifying ProcUnit and DataUnit using these analogies, it becomes easier to understand
their roles and how they contribute to the overall functioning of our multi-core processor
architecture. DataUnit is mainly responsible for the memory management of data. Its
basic functions can be summarized as follows:

(1) Provide an efficient object access mechanism. In the object-oriented processor, the
object replaces the traditional data into the individual stored in the memory, so it is
necessary to design a special hardware and memory protocol to support the access of
the object. In the object store, each object exists in the form of a contiguous space in
memory. When accessing an object, an object reference is needed to identify the
access object, and the data field contained in the object is usually added by the object
reference plus the object data offset. The form is accessed. Corresponding to the virtual
memory technology used in the traditional process-oriented processor, in the object-
oriented processor, the mapping between the object reference and the physical
address needs to be implemented by establishing an object table. DataUnit is used within
a single Cell to map such virtual objects to physical addresses. In the work of the students
before the group, the object memory technology has been discussed in depth (Takase,
Tomiyama, & Takada, 2010; Deng, Ji, Li, Zuo, & Shi, 2011).

(2) Dynamic Management of SPM. The program needs to dynamically apply for the
memory space of the corresponding size during the running process, and release the
space after a certain time. In proposed architecture, each processing core has a certain
amount of on-chip SPM resources (Tabbassum, Talpur, Narejo, & Laghari, 2019). The
allocation and release of local SPM space is also one of the main functions of DataUnit.
DataUnit's support for SPM allocation is mainly reflected in the hardware support of virtual
memory management and SPM runfime management. In terms of virtual memory
management, it supports a variety of granular page sizes. You can adjust the granularity
of data blocks involved in SPM dynamic management as needed, and update the virtual
and real address mapping according to the change of physical addresses before and
after SPM allocation. Address redirection; in terms of SPM runtime management, DataUnit
mainly provides corresponding hardware support to complete efficient SPM runtime
dynamic management.

In order to achieve efficient support for the runtime SPM adaptive algorithm, the
corresponding hardware components are added to the DataUnit to assist the runtime
system for efficient SPM management. For example, in the random sampling SPM
allocation algorithm, the Memory Reference Sampling Unit (MRSU) is infegrated into the
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DataUnit to sample the core data; in the SPM management strategy based on the
access count, the access accumulator is added in the DataUnit. (ACC) Counts memory
accesses. This method of dynamic management of SPM through software and hardware
coordination ensures high runtime efficiency. This paper attempts to use the hardware
and software synergy method to dynamically manage the application and release of
SPM. By using the hardware provided by DataUnit, the core working set is predicted at
runtime and the SPM is managed efficiently. Provide the function of sending and
receiving messages. DataUnit itself can also be considered as having a pumping Objects
like functions can provide a certain amount of buffer and support data transmission and
reception (Gao, 2014; Javaid, Zafar, Awais, & Shah, 2017). When the InterUnit needs to
forward data to the data store in the local Cell, the DataUnit is responsible for receiving
the data and assisting in the completion of the data memory function; when the datain
the DataUnit needs to be forwarded through the InterUnit, it will also provide the local
cache to be sent data. Perform a temporary memory to be sent by InterUnit at the
appropriate fime.

E </ = 5 Routing Unit S —
= = 2 = =
=  — p— =
On-—chip netw ork
interface
MNetwork channels
Figure 7.

Inter-Unit Structure Diagram

InterUnit

As shown in Figure 2.7, InterUnit is mainly responsible for the interaction and forwarding of
data or messages. The objects interact through messages, and the interaction and
synchronization between the various processing nodes is also controlled by the message
as a carrier. InterUnit consists of routing component, DataUnit interface, ProcUnit
interface and network interface. InterUnit is used to connect DataUnit, ProcUnit and other
on-chip network interfaces for processing cores to enable data and message interaction
between different nodes. Inside a single processing core, InterUnit also acts as a channel
between the ProcUnit and the DataUnit . It is responsible for sending data or messages
from the DataUnit to the ProcUnit for processing, and writing the results back to the
DataUnit to complete the related operations of the object.
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Hierarchical Group Shared Memory Design
CONCLUSION

This paper infroduces the basic characteristics of the base three multi-core architecture,
including its unique base three network topology, kernel micro-architecture and
hierarchical memory architecture. These characteristics make the base three multi-core
architecture different from the existing traditional architecture, and become a special
architecture with the underlying full interconnection, the number of links between the
layers decreasing step by step, and the locality of the network operation is very obvious.
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