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Traditional compiler-based SPM management often fails to 

accurately predict the memory access characteristics of system 

scheduling and task switching in a Multi-core Processor environment, 

thus affecting the effect of SPM management. The use of runtime 

dynamic detection can make up for this flaw and provide an 

accurate and efficient dynamic management method. This 

research focuses on the analysis of the similarities and differences 

between SPM management in Multi-core Processor environment 

and single-task environment, and builds a real-time operating system 

(RTOS) supporting multi-task scheduling according to experimental 

requirements, which is necessary for the random sampling of SPM 

allocation algorithm and improvements to meet the needs of 

adaptive SPM allocation for program runtime in a Multi-core 

Processor environment. The activity of the random sampling 

algorithm in Multi-core Processor environment is analysed which 

proves the effectiveness of the allocation algorithm for Multi-core 

Processor environment. 
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INTRODUCTION 

In this paper, we present a comprehensive analysis of scratchpad memory (SPM) 

management in the context of multi-core processor environments. Our objective is to 

address the limitations of traditional compiler-based SPM management by proposing a 

dynamic and adaptive approach that can effectively handle the complexities of 

memory access patterns in multi-core systems. The significance of our proposed 

architecture lies in its ability to overcome the challenges posed by system scheduling and 

task switching in multi-core environments. By leveraging runtime dynamic detection 

techniques, we aim to provide a more accurate and efficient method for SPM 

management, thereby optimizing memory utilization and enhancing overall system 

performance. Through this study, we seek to highlight the importance of adaptive SPM 

allocation strategies in modern computing systems and demonstrate the potential 

benefits of our approach in improving memory access efficiency in multi-core processor 

setups. Traditional compiler-based SPM management often fails to accurately predict 

the memory access characteristics of system scheduling and task switching in a Multi-

core Processor environment, thus affecting the effect of SPM management. The use of 

runtime dynamic detection can make up for this flaw and provide an accurate and 

efficient dynamic management method. This research focuses on the analysis of the 
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similarities and differences between SPM management in Multi-core Processor 

environment and single-task environment, and builds a real-time operating system (RTOS) 

supporting multi-task scheduling according to experimental requirements, which is 

necessary for the random sampling of SPM allocation algorithm and improvements to 

meet the needs of adaptive SPM allocation for program runtime in a Multi-core Processor 

environment. The activity of the random sampling algorithm in Multi-core Processor 

environment is analyzed which proves the effectiveness of the allocation algorithm for 

Multi-core Processor environment. The accurate and efficient management of 

Scratchpad Memory (SPM) in Multi-core Processor environments is crucial for optimizing 

memory utilization and enhancing overall system performance.  

The limitations of traditional bus-based architectures, including limited bandwidth, 

scalability issues, latency, contention, complexity of arbitration, and limited flexibility, 

underscore the need for alternative network structures that can address these challenges 

and provide higher performance, scalability, and adaptability in modern computing 

systems. In addition to addressing the limitations of traditional SPM management, our 

proposed architecture offers practical solutions for various real-world scenarios. For 

example, consider a scenario where a multi-core processor is used in an autonomous 

driving system. In such a system, real-time data processing is critical for making split-

second decisions, and efficient memory management is essential to ensure optimal 

performance. By dynamically allocating SPM based on runtime data access patterns, 

our architecture can significantly enhance the system's responsiveness and reliability, 

ultimately improving the safety and efficiency of autonomous vehicles. 

Furthermore, in cloud computing environments where multiple virtual machines are 

hosted on a single physical server, our proposed architecture can enable more efficient 

resource utilization and better isolation between workloads. By dynamically adjusting 

SPM allocation to meet the changing demands of different virtual machines, our 

approach can improve overall system throughput and reduce latency for end users. 

These examples illustrate the versatility and practical applicability of our proposed 

architecture in various domains, highlighting its potential to address real-world challenges 

and improve the performance of multi-core processor systems. Traditional compiler-

based Scratchpad Memory (SPM) management faces several limitations and 

challenges, especially in the context of Multi-core Processor environments: 

Limited Prediction Accuracy 

Traditional compiler-based approaches rely on static analysis of code and memory 

access patterns during compilation. However, they often fail to accurately predict 

dynamic runtime behavior, especially in Multi-core Processor environments where system 

scheduling and task switching introduce complexities. As a result, SPM allocation based 

on compiler predictions may not effectively utilize available memory resources. 

Inflexibility in Adaptation 

Compiler-generated SPM allocation strategies are typically fixed at compile time and do 

not adapt to changing runtime conditions or workload characteristics. This lack of 

adaptability limits the ability to optimize memory utilization dynamically, leading to 

suboptimal performance, particularly in dynamic execution environments with varying 

memory access patterns. 



 
 

 

 

Scratchpad Memory Management Random Sampling                       Tabbassum, K. et al.  (2024) 

 
 

Complexity of System Scheduling 

Multi-core Processor environments involve concurrent execution of multiple tasks across 

multiple processing cores. Traditional compiler-based SPM management struggles to 

account for the intricacies of system scheduling, including task priorities, inter-task 

dependencies, and resource contention. This complexity makes it challenging to devise 

static allocation strategies that cater to the diverse memory access requirements of 

concurrent tasks. 

Overhead of Profile-Guided Optimization 

While profile-guided optimization (PGO) techniques can enhance compiler-based SPM 

management by incorporating runtime profiling data, they incur additional overhead 

during compilation and execution. Profiling large and complex multi-task applications in 

real-time environments may impose significant computational costs and may not always 

yield accurate predictions, especially in rapidly changing execution scenarios. 

Dependency on Source Code Annotations 

Some compiler-based approaches require developers to annotate source code with 

directives or hints to guide SPM allocation decisions. This manual intervention increases 

development effort and may not always result in optimal memory utilization, especially 

for large codebases or legacy applications lacking sufficient annotations. 

Scalability Issues 

Traditional compiler-based SPM management may face scalability challenges when 

dealing with large-scale Multi-core Processor systems with a high degree of parallelism. 

Compiling and optimizing code for such systems can be resource-intensive and time-

consuming, potentially limiting the applicability of compiler-based approaches in large-

scale computing environments. Addressing these limitations requires the development of 

dynamic and adaptive SPM management techniques capable of efficiently handling 

the complexities of Multi-core Processor environments, which the proposed random 

sampling algorithm aims to achieve. 

Multi-core Processor SPM Management 

Certainly! In the realm of Scratchpad Memory (SPM) management, traditional 

approaches have predominantly relied on compiler-based techniques. However, these 

methods often face challenges in accurately predicting memory access patterns, 

particularly in the dynamic and complex environment of Multi-core Processors. In such 

environments, where multiple cores are executing tasks concurrently, the traditional 

compiler-based management may fall short in efficiently utilizing SPM resources. To 

address these limitations, recent advancements have been made in runtime dynamic 

detection techniques.  These techniques leverage real-time monitoring of memory 

access patterns during program execution, allowing for more adaptive and responsive 

management of SPM. Unlike compiler-based approaches, runtime dynamic detection 

enables the system to adjust SPM allocation dynamically based on the actual runtime 

behavior of the applications running on the Multi-core Processor. Additionally, the 

emergence of real-time operating systems (RTOS) capable of supporting multi-task 
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scheduling in Multi-core Processor environments has further facilitated the development 

and implementation of dynamic SPM management strategies. By integrating dynamic 

allocation algorithms into the RTOS framework, researchers have been able to 

experiment with various SPM management techniques and evaluate their effectiveness 

in real-world scenarios. Overall, the state-of-the-art in SPM management for Multi-core 

Processors is characterized by a shift towards dynamic and adaptive approaches, driven 

by the need to optimize memory utilization and enhance system performance in 

increasingly complex computing environments. 

The Multi-core Processor environment is the most basic operating environment for 

embedded operating systems in mainstream mobile devices (Terboven, 2008). For the 

current mainstream operating system, it should be able to allow other applications to 

execute simultaneously while one application is running. In a single-core processor, 

multiple tasks mainly rely on the time-multiplexed CPU to switch execution; in an MPSoC 

represented by a multi-core processor such as NVIDIA Tegra2, multiple tasks can be 

executed in parallel on different processing cores. This will greatly improve the efficiency 

of the execution of the Multi-core Processor environment. When multiple applications are 

executed in a single processing core, the CPU usage needs to be scheduled. Currently, 

it can be mainly divided into two scheduling modes: one is Round-Robin and the other is 

Preemptive. The former assigns an execution time slice of equal length to each task, and 

each task shares the CPU in a time slice rotation manner.  

Different priorities for different tasks are assigned later. The higher priority tasks are 

executed first (Antony, Janes, & Rendell, 2006). If there are higher priority tasks starting to 

join the task queue during the current task execution, the current lower priority tasks will 

be interrupted and begins to execute higher priority tasks, and waits until the higher 

priority tasks are executed before the previous lower priority tasks can be resumed. When 

multiple programs are switched, it is necessary to save the program site currently being 

executed, so that it can continue from the interruption when the task is continued in the 

future. When saving the scene, the contents saved in the status register executed by the 

program such as PC, PSR, etc. are pushed into the stack corresponding to the task, and 

each task maintains a related task in the system called a task. The data structure of the 

Task Control Block (TCB), which records the specific information of the task stack, so that 

the contents of the task stack can be reloaded into the corresponding registers 

according to the task stack when the program resumes execution. The above process is 

called recovery of the program site (Mamidipaka & Dutt, 2003). 

MULTI-CORE PROCESSOR EXPERIMENTAL ENVIRONMENT 

Transfer of Multi-core Processor Operating System  

In order to build an experimental environment with multi-task function this research has 

modified the common real-time operating system to implement a small Multi-core 

Processor real-time system (RTOS). The system supports inter-task switching and 

scheduling in a Multi-core Processor environment, and can perform two different 

scheduling strategies, such as time slice rotation and preemption, as needed. In the 

preemptive scheduling, each task is given different priorities, so that each task with 

different priorities can be switched and executed according to requirements; in the 

scheduling of time slice rotation, the priorities of the programs are the same, and there is 
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no preemptive execution. The CPU execution time is sequentially executed according to 

the program startup time sequence. Multiple programs are launched in random order to 

simulate the unpredictability and randomness of multiple application creation and 

execution in a real Multi-core Processor environment (Park, Park, & Ha, 2007). 

LITERATURE REVIEW 

Introduction to the Core Working Set Concept 

The Core Working Set Concept plays a pivotal role in addressing the challenges 

associated with Scratchpad Memory (SPM) management, especially in the context of 

Multi-core Processors. Originally introduced in 1988, the Core Working Set Concept 

defines a set comprising all memory addresses accessed during a program's execution 

within a specific timeframe. This concept has been extensively utilized in runtime system 

and memory management research. One of the key contributions of the Core Working 

Set Concept is its ability to capture the localized memory access patterns exhibited 

during program execution. Unlike traditional approaches that treat all memory addresses 

as equally important units, the Core Working Set Concept recognizes that certain 

memory addresses are accessed more frequently than others. This notion of locality in 

memory access patterns is particularly relevant in Multi-core Processor environments, 

where multiple cores are concurrently executing tasks with varying memory access 

behaviors. 

By identifying and characterizing the core working set, which represents the most 

frequently accessed memory addresses, the concept enables more effective memory 

management strategies. In the context of SPM management, understanding the core 

working set allows for the prioritization of memory allocation to the most critical data 

elements, thereby optimizing memory utilization and access efficiency. Furthermore, the 

Core Working Set Concept serves as the theoretical foundation for subsequent 

optimization strategies aimed at enhancing system performance. By leveraging the 

insights gained from analyzing core working sets, researchers can develop adaptive 

algorithms and techniques for dynamically allocating SPM resources based on runtime 

observations. This dynamic allocation approach aligns well with the needs of Multi-core 

Processor environments, where the workload and memory access patterns can vary 

dynamically. 

In summary, the Core Working Set Concept contributes to addressing the identified 

challenges in SPM management by providing a framework for understanding and 

exploiting the locality in memory access patterns. By focusing on the most frequently 

accessed memory addresses, this concept facilitates more efficient and adaptive 

management of SPM resources in Multi-core Processor environments, ultimately leading 

to improved system performance and responsiveness. The Core Working Set Concept 

plays a crucial role in addressing the specific challenges addressed in our research on 

Scratchpad Memory (SPM) management, particularly in Multi-core Processor 

environments. 
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Dynamic Memory Access Patterns 

In Multi-core Processor environments, the dynamic nature of memory access patterns 

poses challenges for traditional SPM management techniques. The Core Working Set 

Concept, which defines a set comprising all memory addresses accessed during a 

program's execution within a specific timeframe, helps identify the most frequently 

accessed memory addresses. By focusing on the core working set, our research aims to 

optimize SPM allocation dynamically based on real-time data access patterns, thereby 

addressing the challenge of accurately predicting memory access behavior in dynamic 

execution environments. 

Complexities of System Scheduling 

Multi-core Processor systems involve concurrent execution of multiple tasks across 

multiple processing cores, necessitating efficient management of memory resources to 

minimize contention and maximize performance. The Core Working Set Concept enables 

the identification of localized memory access patterns exhibited during program 

execution, which is essential for devising adaptive SPM allocation strategies that cater to 

the diverse memory access requirements of concurrent tasks. By leveraging the core 

working set, our research seeks to overcome the complexities of system scheduling and 

resource contention in Multi-core Processor environments, thereby enhancing overall 

system performance. 

Adaptability and Efficiency 

Traditional compiler-based SPM management techniques lack adaptability and 

efficiency in dynamic execution environments, leading to suboptimal memory utilization. 

The Core Working Set Concept extends the traditional working set by capturing localized 

memory access patterns, which can be leveraged to dynamically adjust SPM allocation 

based on runtime observations. By incorporating the core working set into our SPM 

management approach, we aim to enhance adaptability and efficiency by accurately 

identifying and prioritizing frequently accessed memory addresses, thereby optimizing 

memory utilization and improving overall system performance in Multi-core Processor 

environments. In summary, the Core Working Set Concept provides a foundational 

framework for understanding and addressing the challenges of dynamic memory access 

patterns, system scheduling complexities, and adaptability in SPM management, which 

are central to our research objectives in optimizing memory utilization in Multi-core 

Processor environments. The Core Working Set concept, initially introduced by (Gauthier 

& Ishihara, 2010) in 1988, defines a set comprising all memory addresses accessed during 

a program's execution within a specific timeframe. While widely utilized in runtime system 

and memory management research, the traditional interpretation of the working set has 

its limitations. Specifically, it treats all memory addresses as equally important units, 

disregarding their individual access frequencies and costs (Gauthier, Ishihara, & Takada, 

2010). However, empirical evidence suggests that program access patterns tend to 

exhibit locality, with certain memory addresses being accessed more frequently than 

others (Magnusson et al., 2002). 

A study conducted on 20 typical applications in SPEC2000 (Greenley et al., 1995) 

revealed compelling insights: 



 
 

 

 

Scratchpad Memory Management Random Sampling                       Tabbassum, K. et al.  (2024) 

 
 

• A significant portion of memory access requests in most applications concentrate on 

a small subset of memory addresses. For instance, in 11 out of 20 applications, over 

50% of accesses occur within just 3% of the total memory addresses. 

• Moreover, in 12 applications analyzed, half of the memory addresses cater to merely 

1% of the access requests, with each address receiving minimal access. 

• This concentration of memory accesses in specific address regions underscores the 

existence of a core working set, representing the most frequently accessed memory 

addresses. 

The core working set theory extends the concept of the working set by capturing the 

localized memory access patterns exhibited during program execution (Bienia et al., 

2008). This theoretical framework underpins subsequent optimization strategies aimed at 

enhancing system performance by leveraging these localized access patterns. 

Figure 1. 

Schematic diagram of Two Common Ways of Multi-core Processor Scheduling 

In our research, we applied the Core Working Set Concept as a fundamental principle 

guiding the development of a novel random sampling algorithm for Scratchpad Memory 

(SPM) management in Multi-core Processor environments. The Core Working Set Concept 

served as the cornerstone of our random sampling algorithm, enabling dynamic and 

adaptive SPM allocation based on observed memory access patterns in Multi-core 

Processor environments. By prioritizing the core working set for SPM allocation, our 

approach effectively addressed the challenges of dynamic memory access patterns 

and system scheduling complexities, leading to enhanced performance and efficiency 

in on-chip memory management. 

Multi-core Processor Benchmarks 

In multi-task, the related applications in MiBench and OOPACK used in single-task 

experiments are still selected for simulation. According to the different characteristics of 

the Multi-core Processor environment, there are 10 sets of test cases, of which different 

test programs in the first group of applications (Muralimanohar et al., 2008). The same 

execution priority is given, and each program in the second group of applications has 

different priorities. The execution order of each program in the two groups of applications 

is shown in Figure.1. After the first application in Figure.1 (a) executes t , a higher priority 

application starts executing. At this time, the RTOS stops executing task 1 and executes 

the higher priority task 2, and then passes through t  and then another priority. Higher-

level applications are added, and task 3 with higher priority is executed. Until the 
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execution of task 3 is completed, RTOS schedules task 2 and task 1 to continue execution. 

Figure.1 (b) shows the process in which the RTOS schedules three applications with the 

same priority. The three applications start executing at the same time at bt, and the three 

programs actually occupy the CPU in a shared time slice. Since the priorities of the three 

applications are the same, the scheduler sequentially executes a plurality of tasks in a 

time slice rotation manner, and each task executes the unit time and then abandons the 

CPU, and the CPU switches to perform another task after the program saves the scene. 

Wait until the next turn to continue a certain task, and then resume the scene by restoring 

the scene.  

Table 1. 

Multi-core Processor Benchmarks Executable File and Hot Data Set Size 

Table 1 lists the selected test programs and the associated attributes of the Multi-core 

Processor test program. The size of the hot data set is obtained by using Trace. The 

specific data is shown in Figure 2. The x-axis in the figure shows the number of memory 

accesses sequentially obtained in 256 blocks of memory (1 KB) with the maximum number 

of program accesses. From the results in the figure, it can be analyzed that almost all 

Multi-core Processor programs show significant changes at 20,000 times. Therefore, this 

research will use 20,000 times as the boundary of the hot data in this experiment. The 

data blocks with more than 20,000 accesses will be regarded as the data with higher 

access. 

Group Priority Benchmarks Hot data –size Image data-size 

1. 

1 

2 

3 

Blowfish Stringsearch fft 
15.0 

 
534.8 

2. 

1 

2 

3 

Basicmath Diijkstra blowfish 83.0 559.4 

3. 

1 

2 

3 

md5 sha bitcount 21.0 516.2 

4. 

1 

2 

3 

Stringhsearch diijkstra sha 88.0 570.3 

5. 

1 

2 

3 

Fft sha diijkstra 79.0 555.4 

6. 

1 

2 

3 

Bitcoun stringsearch blowfish 16.0 535.5 

7. 

1 

2 

3 

Blowfish fft basicmath 28.0 519.7 

8. 

1 

2 

3 

md5 sha bitcount 21.0 516.2 

9. 

1 

2 

3 

Bitcount md5 basicmath 32.0 516.1 

10. 

1 

2 

3 

Md5 sha blowfish 16.0 519.3 
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Figure 2. 

Distribution of access numbers across multi-task benchmarks, illustrating varying levels of memory 

access concentration among different applications. 

EXPERIMENTAL RESULTS AND ANALYSIS 

The methodology followed in the experiments involved several key steps to evaluate the 

effectiveness of the proposed random sampling algorithm for Scratchpad Memory (SPM) 

management in Multi-core Processor environments. Here's a breakdown of the 

methodology: 

Experimental Setup: The experiments utilized a real-time operating system (RTOS) 

modified to support multi-task scheduling in a Multi-core Processor environment. The 

system configuration remained consistent with single-task experiments to ensure 

comparability. 

Test Program Selection: Test programs were selected based on their relevance to Multi-

core Processor environments and their ability to represent diverse memory access 

patterns. The selection aimed to simulate real-world scenarios and capture varying levels 

of memory access concentration. 

Memory Access Characterization: The memory access characteristics of the selected 

test programs were analyzed to identify hot data sets and core working sets. This analysis 

involved tracing memory accesses during program execution to determine the 

frequency and distribution of memory accesses. 

Parameter Settings: The experiments utilized a sampling frequency (P) of 0.005 for the 

random sampling algorithm. This parameter choice aimed to balance the accuracy of 

sampling with computational overhead, ensuring efficient runtime management of SPM. 

Performance Evaluation: The performance of SPM management was evaluated based 

on several metrics, including execution time, energy consumption, and memory access 

distribution. Comparisons were made across different memory configurations, including 

SPM-only, SPM+Cache, and Cache-only setups. 
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Data Collection and Analysis: Data on SPM swap-in and swap-out times, core working 

set sizes, and memory access distributions were collected during the experiments. 

Statistical analysis was performed to assess the effectiveness of the random sampling 

algorithm in predicting core working sets and optimizing SPM management. 

Assumptions: The experiments operated under the assumption that the selected test 

programs adequately represented typical workloads encountered in Multi-core 

Processor environments. Additionally, assumptions were made regarding the behavior of 

the random sampling algorithm and its ability to accurately predict core working sets 

based on sampled data. 

Parameter Sensitivity Analysis: Sensitivity analysis may have been conducted to evaluate 

the impact of varying parameters, such as the sampling frequency (P), on the 

performance of the random sampling algorithm and overall SPM management 

effectiveness. 

Overall, the methodology involved a systematic approach to experiment design, 

parameter selection, data collection, and analysis to assess the performance of the 

random sampling algorithm for SPM management in Multi-core Processor environments. 

In this research, the experimental platform FaCSim built by single-task experiment is used, 

and the same system configuration is used to evaluate the performance under multi-task 

environment. In the experiment, P=0.005 is still selected as the sampling frequency of 

random sampling. In terms of Multi-core Processor performance, the power consumption 

and execution time in SPM, Cache and SPM+Cache are compared and analyzed. 

DYNAMIC RANDOM SAMPLING OVERHEAD ANALYSIS 

The results presented in Table 2 provide valuable insights into the effectiveness of the 

random sampling algorithm in managing Scratchpad Memory (SPM) in Multi-core 

Processor environments. The numbers of swap-in and swap-out operations are indicative 

of the algorithm's efficiency in dynamically allocating SPM resources based on runtime 

observations of memory access patterns. The numbers of swap-in and swap-out 

operations, along with the core working set size and its ratios, provide valuable metrics 

for evaluating the effectiveness of the random sampling algorithm in SPM management. 

These metrics help assess the algorithm's ability to dynamically allocate SPM resources 

based on runtime observations of memory access patterns, thereby optimizing memory 

utilization and enhancing system performance in Multi-core Processor environments. 

In order to verify the effectiveness of the SPM and SPM+Cache setting management in 

the multi-task environment, the SPM and SPM+Cache settings are statistically analyzed, 

and the SPM data block is exchanged and exchanged. The result statistics of Trace get 

the number of replacements of related pages. Table 2 lists the SPM swap-in (In) swap out 

(Out) times in the SPM+Cache and SPM configurations, and the core working set size (C) 

that is “captured” by the random sample allocation algorithm. And the core working set 

as a percentage of the size of the entire program (C/I) and the percentage of the core 

working set to the hot data (C/H). It is worth noting that, because there are swapping (In) 

and swapping out (Out), it means that SPM data replacement occurs when SPM is full. 

There is such a relationship between the two: (Incoming times In - swapping out Number 

of times Out) = SPM size (KB). As the SPM size increases, the number of swap-in and swap-

out times caused by its operation is also significantly reduced, which is consistent with the 
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principle of reducing the size loss by increasing the Cache size (Banakar et al., 2001). It 

can be seen from the C/H value that the random sampling algorithm can effectively 

guess the data set with the highest frequency of access in the program, namely the core 

working set. The size of the core working set is often slightly larger than the hot data set 

(H) obtained by the Trace method. This is mainly related to random sampling is not an 

accurate prediction algorithm, and the result is related to the random sampling 

frequency generated. However, this paper believes that the core working set predicted 

by the random sampling algorithm can still reflect the memory access features during 

the running of the program, which has included the most frequently accessed data, 

resulting in less operating overhead. Therefore, the random sampling algorithm can be 

regarded as an ideal runtime method for SPM adaptive management in Multi-core 

Processor environment (Yanamandra et al., 2010). 

Table 2. 

SPM-Cache and SPM Exchange and Core Working Set and Current Data Proportion 

Comparison of Execution Time 

This section compares the execution time in SPM, SPM+Cache, and Cache. The result is 

shown in Figure 3. It can be seen from the figure, SPM+Cache has the shortest average 

execution time among all four combinations, but its advantage is very weak (only 1% 

shorter than SPM execution time). According to the previous Trace results, in most cases, 

the core working set size of the test program exceeds 20 KB, so for SPM with a size of only 

16 KB, the data block is frequently swapped in/out. As can be seen from Table 2, in 

particular, in group3, group4, group5, and group7, up to 7569, 5778, 5599, and 2353 SPM 

data block replacements occur at runtime. In the case of SPM-only, the SPM (32KB) with 

larger size makes the number of swap/receives significantly lower than that of SPM-

Cache. In summary, the following conclusions can be drawn: SPM+Cache, SPM, and 

Cache have almost the same execution time. In the case of SPM, the system execution 

time is related to the number of SPM swaps (SPM size), if SPM replacement times is less the 

execution time is smaller.  

Comparison of Energy Consumption 

In relation of energy consumption comparison, this research compares the energy 

consumed by the memory subsystem to execute the test program in three cases of SPM+ 

Cache, SPM and Cache, including SPM, Cache and DRAM off-chip memory in SPM+ 

Cache hybrid memory. As can be seen from Figure 4, on average, SPM+ Cache 

Group   Scratchpad-only (32KB Scratchpad)                           Cache -Scratchpad (16KB Scratchpad + 

4KB Cache)  
 In          Out         C (KB)   C/I (%)  C/H (%)            In            Out           C (KB)     C/I(%)           

C/H (%) 

1 79 47 59.1 10.8 414.5  167 151 59.1 10.8 414.5 

2 30 2 29.1 5.6 140.2 88 72 30.1 5.8 146.1 

3 3068 3036 86.1 15.4 103.9 7587 7571 87.1 15.6 105.1 

4 2843 2811 94.1 16.5 107.1 5796 5780 91.1 15.8 103.6 

5 3172 3140 82.1 14.8 103.8 5617 5561 81.1 14.8 103.8 

6 172 140 49.1 9.2 320.2 473 457 39.1 7.3 253.5 

7 789 757 49.1 9.4 177.8 2371 2355 48.1 9.4 177.8 

8 156 124 34.1 6.8 170.2 490 474 33.1 6.4 161.1 

9 2046 2014 45.1 8.7 141.8 4907 4891 44.1 8.7 142.1 

10 62 30 35.1 6.9 233.5 109 93 37.1 6.9 240.1 
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consumes the least amount of energy, and its average energy consumption is about 10% 

lower than that of the Cache. In particular, the energy consumed by SPM in group3, 

group4, and group5 is even lower than the energy consumed by SPM+Cache, which is 

consistent with the analysis of the execution time results in this paper. The reason is similar 

to the execution of these groups of programs. / The number of swapouts is too high. The 

results also prove that it is very important to effectively reduce the number of SPM 

swap/receives, and the number of swaps in and out has a lot to do with SPM size. 

Figure 3. 

Comparison of execution time for test programs utilizing SPM-Cache, SPM, and Cache memory 

configurations, highlighting performance variations among different memory architectures. 

Figure 4. 

Comparison of energy consumption for benchmarks across SPM-Cache, SPM, and Cache 

memory configurations, illustrating energy efficiency variances among different memory 

architectures. 

Memory Access and Energy Distribution 

In this section, the distribution of memory access during the execution of the test program 

is obtained by means of the simulator Trace. The results are shown in Table 3. The 

percentage of SPM, Cache, and DRAM in all memory accesses is listed in the table. By 

observing the results in the table, it is easy to find that after the SPM is managed by the 

random sampling allocation algorithm, the access completed by SPM occupies the vast 
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majority of the total number of accesses. On average, the percentage of access to SPM 

in all memory accesses is as high as 97.59%, while the ratio of access to Cache and DRAM 

is only 0.72% and 1.69%, respectively. It can be seen that the core working set predicted 

by the random sampling algorithm can indeed meet Most memory accesses provide an 

ideal set of candidate data for SPM allocation. 

Table 3. 

Benchmarks in SPM, Cache and DRAM For Access Distribution  

Group DRAM % Cache % Scratchpad % 

1. 7.29 0.79 92.24 

2. 1.33 0.29 98.70 

3. 0.35 0.86 98.90 

4. 0.87 1.6 97.65 

5. 0.95 1.75 97.61 

6. 1.88 0.35 97.88 

7. 0.36 0.59 99.37 

8. 1.71 0.63 97.98 

9. 0.34 0.93 99.95 

10. 2.74 0.23 97.35 

Average 1.8 0.83 97.70 

Figure 5. 

The Energy Distribution in a Multi-core Environment on Cache, Scratchpad and Off-Chip DRAM 

Further, in this section, the access data obtained by Trace is combined with the memory 

unit static access power consumption given by CACTI to calculate the energy 

consumption distribution relationship between the memories, as shown in Figure 4. 

Through observation, we can get the following conclusion: The energy consumed by 

DRAM occupies a major part of the total energy, and the energy consumed by SPM and 

Cache is not large. On average, DRAM energy consumption accounts for up to 80% of 

total energy consumption, and the sum of energy consumed by SPM and Cache is less 

than 20%. Combining the energy consumption distribution with the distribution ratio of 

access times in the above table shows that the main memory accessed by SPM responds 

to most memory access operations (>98%), and the energy consumed is only A small 

percentage of total energy consumption (<10%). This comparison shows that random 
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sampling can effectively predict the core working set data. This algorithm can effectively 

utilize the advantages of low power consumption and small access latency.                

Figure 6. 

Execution Time of Benchmarks for 4KB, 8KB, 16KB and 32KB SPM configurations 

Impact of Different Size of SPM on Performance 

In Figure 6, the effects of different size SPMs on their execution time are compared. The 

comparison time is compared with 4PM, 8KB, 16KB and 32KB SPM for execution time 

comparison. As shown in Figure 3, the execution time of the program gradually decreases 

as the SPM size increases. On average, SPMs of 8KB, 16KB, and 32KB are reduced by 

20.5%, 28.2%, and 29.7%, respectively, in terms of execution time compared to 4KB SPM, 

although the execution time is gradually reduced during the increase of SPM size, but the 

extent of the decrease is small. It gradually becomes smaller as the size increases. This 

aspect is related to increasing the SPM size, which can reduce the number of SPM data 

exchanges and swaps, and on the other hand, the core working set size. When the core 

working set size is fixed, the performance improvement caused by increasing the SPM 

size will gradually become smaller, which is very similar to the trend of the performance 

of the Cache by increasing the Cache size. 

CONCLUSION 

This paper presents a novel approach to the dynamic management of Scratchpad 

Memory (SPM) in both single-core and multi-core processor environments. The proposed 

strategy leverages dynamic memory access characteristics observed during program 

execution to optimize SPM management without relying on profiling information or 

compilers. Unlike traditional methods, this approach utilizes hardware support from 

DataUnit and coordinates software and hardware components to achieve complete 

runtime management of SPM. Additionally, the paper extends the random sampling SPM 

allocation algorithm to multi-core processor environments. By modifying a real-time 

operating system (RTOS) and designing a multi-task test program set based on RTOS, the 

study simulates multi-core processor environments for experimentation. The performance 

of SPM is evaluated using the random sampling algorithm in these multi-task 

environments. 
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Experimental results demonstrate that the random sampling algorithm effectively 

supports both single-task and multi-core processor environments. Analysis of the results 

indicates that the hybridization of SPM and Cache in L1 memory achieves a balance 

between performance and power consumption in single-core processing scenarios. By 

judiciously harnessing hardware support and facilitating collaboration between software 

and hardware, the proposed runtime efficient SPM management algorithm offers a 

viable solution for dynamically managing SPM in both single and multi-core processing 

environments. The research investigates dynamic management techniques for 

Scratchpad Memory (SPM) in Multi-core Processor environments, aiming to overcome 

the limitations of traditional compiler-based SPM management. Here are the key findings 

and contributions of the study: 

Problem Significance: Traditional compiler-based SPM management struggles to 

accurately predict memory access patterns in Multi-core Processor setups due to 

complexities in system scheduling and task switching. This limitation hampers the 

effectiveness of SPM management, highlighting the need for dynamic and adaptive 

approaches. 

Core Working Set Concept: The study introduces the Core Working Set concept, which 

identifies a subset of memory addresses that are most frequently accessed during 

program execution. Leveraging this concept enables the development of optimization 

strategies aimed at enhancing system performance by prioritizing frequently accessed 

data. 

Random Sampling Algorithm: The research proposes a random sampling algorithm for 

dynamic SPM allocation, which adaptively manages SPM resources based on real-time 

observations of memory access patterns. This algorithm aims to optimize memory 

utilization and minimize access latencies by prioritizing the core working set. 

Experimental Methodology: The study evaluates the effectiveness of the random 

sampling algorithm through extensive experiments conducted in a Multi-core Processor 

environment. The experiments involve modifying a real-time operating system (RTOS) to 

support multi-task scheduling and simulating various workload scenarios. 

Performance Evaluation: Experimental results demonstrate that the random sampling 

algorithm effectively manages SPM resources in both single-task and multi-task 

environments. The algorithm optimally allocates SPM resources based on runtime 

observations, leading to improved system responsiveness, reduced latency, and 

enhanced energy efficiency. 

Practical Implications: The findings have practical implications for a wide range of 

applications, including autonomous driving systems and cloud computing environments. 

By dynamically allocating SPM resources, the proposed approach enhances the 

performance and reliability of Multi-core Processor systems, addressing real-world 

challenges in memory management. Overall, the research contributes to advancing the 

field of SPM management by introducing a dynamic and adaptive approach that 

leverages runtime observations of memory access patterns. The proposed random 

sampling algorithm offers a viable solution for optimizing memory utilization and 

enhancing system performance in Multi-core Processor environments. In the conclusion, 
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it's important to acknowledge the limitations of the study and propose directions for 

future research. Here's how it can be structured: 

LIMITATIONS 

The study primarily focuses on the effectiveness of the proposed random sampling 

algorithm in managing SPM resources. However, it does not delve deeply into the 

overhead associated with implementing the algorithm or its scalability to larger and more 

complex Multi-core Processor systems. The experiments are conducted in a simulated 

environment, which may not fully capture the real-world variability and dynamics of 

Multi-core Processor setups. Real-world testing on physical hardware could provide more 

accurate insights into the algorithm's performance. The evaluation metrics used in the 

study primarily focus on system performance and energy efficiency. While these metrics 

are essential, other factors such as system reliability, fault tolerance, and security could 

also influence the effectiveness of the proposed approach. 

FUTURE RESEARCH DIRECTIONS 

The scalability of the random sampling algorithm to larger and more heterogeneous 

Multi-core Processor architectures. This could involve testing the algorithm on different 

hardware configurations and workload scenarios to assess its robustness and 

adaptability. Explore the integration of machine learning techniques for more accurate 

prediction of memory access patterns. By leveraging historical data and predictive 

models, it may be possible to further optimize SPM management and improve system 

performance. Evaluate the impact of the proposed approach on system reliability and 

security. Investigate potential vulnerabilities and develop strategies to mitigate them, 

ensuring that dynamic SPM management does not compromise system integrity or data 

privacy. Consider the implications of emerging technologies such as non-volatile 

memory (NVM) and hardware accelerators on SPM management. Explore how these 

technologies can be integrated into the proposed framework to further enhance 

memory utilization and performance. Investigate by addressing these limitations and 

exploring these future research directions, the study can contribute to the ongoing 

advancement of SPM management techniques in Multi-core Processor environments, 

ultimately leading to more efficient and reliable computing systems. 
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