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The paper investigates the security of an intelligent reflecting 

surface (IRS) assisted unmanned aerial vehicle (UAV) network, 

where a base station (BS) transmits confidential information to the 

ground user (GU) via IRS-assisted UAV. The study explores using 

UAVs with IRS to enhance the security and reliability of wireless 

communication systems, particularly in the presence of 

eavesdroppers and friendly jammers. The beamforming at IRS-

assisted UAV and UAV trajectory are jointly formulated as a non-

convex optimization problem, which is solved by the deep 

reinforcement learning (DRL) algorithm to maximize the sum 

secrecy rate of GU with the aid of jammer. We proposed a dual-

DDPG (D3PG) algorithm that utilizes the deep deterministic policy 

gradient (DDPG) structure to effectively address these dual non-

convex problems of the UAV-trajectory optimization and the UAV-

IRS beamforming optimization. The proposed algorithm's 

effectiveness and robustness are demonstrated through 

simulation results, with the IRS significantly enhancing the sum 

secrecy rate. Extensive simulations show that the proposed DRL-

based D3PG scheme outperforms the traditional optimization 

schemes and ordinary DQN schemes. 
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INTRODUCTION 

In the past, military operations relied on human pilots for missions with high levels of risk. 

However, there has been a recent discovery of more applications for Unmanned Aerial 

Vehicles (UAVs) in civilian domains (Zhang et al., 2022). They encompass various tasks 

such as rescue and search operations, inspection, and policing. The setup includes 

various components and multiple links to communication. Each link has the responsibility 

of transmitting specific types of information and data. In these networks, there should be 

three different types of links based on the transmitted information: radio communication, 

Satellite link, and User 2 User(U2U) (Lu et al., 2022). The radio communication links transmit 

telemetry data, control audio, and video information. In addition, satellite links are 

responsible for transmitting GPS, meteorological, and weather information, as well as the 
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data transferred through radio communication links. Due to the UAVs' ability (Yang et al., 

2020) to move quickly, easy deployment, floating capability, and low maintenance cost, 

they can be used in various civil applications. Effective communication is vital for the 

seamless operation of UAVs in the cutting-edge next-generation (6G) network, which is 

driven by the power of AI. Unmanned Aerial Vehicles (UAVs) possess the capacity to 

deliver efficient and secure wireless communication. This is because of their versatility and 

user-friendly interface. critical emergency areas where Ground BS are unavailable 

(Lacovelli et al., 2023). It can work in the In certain high-traffic locations, such as a bustling 

sports or music event, the utilisation of flying UAVs can be implemented to provide 

immediate service and relieve the burden on cellular networks. One more application of 

UAVs (Zhang et al., 2023) involves serving as a flying relay to establish connections 

between nodes that are far apart (Wang et al., 2022). The rapid development of UAVs 

has sparked a wide range of applications in various sectors, such as military, civilian, and 

commercial (Samir et al., 2021). These applications include aerial inspection, cargo 

transport, search and rescue operations, as well as video streaming, among others. UAVs 

are becoming increasingly popular as aerial communication platforms.  

They are being used to improve the overall performance and secrecy rate of the system. 

Furthermore, the incorporation of UAVs mobile communication or with BS to greatly 

improve network reliability and throughput. UAVs have a greater tendency to establish 

LoS wireless links, which leads to improved air-ground(A2G) communication quality.  

Typically, high-frequency waves have a tendency to be blocked by physical barriers 

because of their strong directivity and limited diffraction. Wireless propagation 

environments can be reconfigured by the IRS through software-controlled reflection. IRS 

is a planar array that houses numerous passive reflective elements. These elements have 

the ability to individually adjust the phase of the incoming signal and reflect the waves 

accordingly. IRS has been identified as a promising contender for the upcoming wireless 

network. Nevertheless, when it comes to wireless communication systems, the UAV-

assisted systems have a unique challenge. Their air-to-ground channels, known as LoS, 

make them more vulnerable to eavesdropping. This means that potential eavesdroppers 

can easily intercept these systems, which poses a greater risk to the confidentiality (Guo 

et al., 2021) of the data. Based on the specific applications of UAVs, such as 

communication networks, it is clear that there is a growing demand to improve the 

security of data transmission on UAV-assisted systems. These systems often rely on 

transmitting sensitive information over wireless links. Therefore, they can be vulnerable to 

interception by individuals with malicious intentions, such as eavesdroppers and jammers. 

In the past, conventional cryptographic methods have been employed to safeguard 

communication channels.  

However, with the rapid advancements in computer technologies, these methods may 

be vulnerable to sophisticated attacks. In addition to encryption, PLS techniques also rely 

on the unique properties of the wireless channel to enhance security. Integrating IRS into 

UAV communication infrastructure is an increasingly popular solution for addressing PLS 

issues. These surfaces are constructed using affordable passive mirrors that can 

manipulate wave propagation to boost signal strength and direct signals towards the 

intended receivers while reducing interference. Furthermore, the study focuses on IRS-

enabled secure UAV communication. Utilising the principles of trajectory optimisation, 

power transmission, and the reflective properties of IRS, we aim to enhance the security 
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of data transmission by minimising the impact of eavesdropping along with friendly 

jammer. The research work considers previous studies on UAV communication systems, 

physical layer security, and optimisation techniques. Its aim is to provide a fresh 

perspective on the development of secure communication protocols for UAV networks, 

with a special focus on integrating IRS and DRL algorithms to solve complex optimisation 

problems. The research findings will greatly contribute to the advancement of UAV-

assisted communication systems, leading to the development of more secure and 

reliable wireless networks in the future. 

The focus of the research is on the security of the physical layer of a UAV network. In this 

scenario, the base station acts as a transmitter, sending sensitive data to the ground 

station or Ground User(GU) with the assistance of a UAV-IRS. The secure transmission of 

data is compromised by the presence of an eavesdropper who can also be near the 

jamming device. In these networks, there are ongoing efforts to mitigate any interference 

and ensure the secure transmission of data to its intended destination. An effective 

approach to ensuring security at the physical layer involves utilising carefully planned 

UAV paths and controlling transmit power. This strategy considers both mobility and 

power limitations to achieve a cooperative solution. In particular, solving the optimisation 

problem for trajectory and the backscatter coefficient matrix can be quite challenging 

due to its non-convex nature. Therefore, the DRL-based algorithm is utilised due to the 

presence of two intricate convex problems or the utilisation of two DRL algorithms to 

achieve optimal optimisation for UAV and IRS. 

LITERATURE REVIEW 

The previous work primarily focuses on security of data by using the baseline and AO 

schemes. Although, up until now, there have been limited studies on incorporating IRS 

into UAV communication, specifically in terms of physical layer security. The latest 

research on the IRS has mostly concentrated on optimizing power and spectral 

efficiency, as well as improving channel estimation. Additionally, these studies have also 

examined the study of capacity and data rates. The area of deep learning-based design 

for communications with IRS and analysis of the reliability of IRS-aided communication 

has also been explored. Regarding the studies on UAV-enabled communications, there 

are two primary areas of focus. One involves the use of UAVs to assist with 

communications, while the other involves utilising cellular networks for UAV 

communications.   

In in this work (Tariq et al., 2023), the authors aim at discussing an IRS-assisted UAV network, 

where a UAV with an IRS acts as a passive relay. The primary challenge involved 

maximising the system's secrecy rate by jointly optimising the location of the UAV and the 

phase shifts of the IRS. An iterative algorithm is proposed to address this issue, where the 

location of the UAV is optimised using fixed phase shifts, and the phase shifts are 

optimised based on the updated UAV location. In this paper (Naeem et al., 2022), the 

authors have explored the use of an UAV with an air-to-ground friendly jammer to 

enhance the security of communications between a legitimate transmitter-receiver pair, 

even in the presence of an unknown eavesdropper. Authors analyse the effect of UAV 

jamming power and its spatial deployment on the reliability and security of the system. 

They investigate how these factors impact the outage probability of the legitimate 

receiver and the intercept probability of the eavesdropper. They have developed a new 
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security measure called the intercept probability security region (IPSR) based on the IP. 

The IPSR defines the specific region within a target area where the IP falls below a certain 

threshold. Afterwards, a low-complexity iterative algorithm was developed to maximise 

the IPSR. This was achieved by optimising the 3-D deployment and jamming power of the 

UAV jammer in a joint manner. Considering the rapid advancements in technology, it is 

crucial to reconsider the design of wireless networks to effectively incorporate emerging 

technologies like federated learning (FL) and software defined networks deployed over 

the air. IRS is a cutting-edge technology that has shown immense promise in improving 

communication, particularly in difficult environments. By enhancing the control of the 

channel between the transmitter and receiver, IRS has the ability to revolutionise the way 

we communicate. For this research (Dong et al., 2024), the authors are examining the 

implementation of IRS using unmanned aerial vehicles to improve wireless 

communications in battlefield situations.  

They also explore the security considerations in this type of deployment by utilising a 

combination of DRL and defensive deception techniques. Utilising data-driven power 

allocation in communication channels with the help of RL, we can effectively obscure 

the attack surface, entice jammers to specific channels, and ultimately reduce the 

impact of denial-of-service attacks. UAVs, when used in conjunction with IRSs, are 

leading the way in technology to improve the capacity of wireless communications 

channels. This is accomplished by utilizing the three-dimensional mobility of UAVs in 

conjunction with the intelligent radio capabilities of IRSs.  In this article (Wu et al., 2024), 

the authors studied the design of secure transmission for a UAV network with the 

assistance of an IRS, while considering the presence of an eavesdropper. Optimising the 

trajectory of the UAV, phase and the amplitude with the IRS matrix is vital to maximize the 

secrecy rate. In order to tackle this complex issue, the authors break it down upto 3 

smaller problems, then utilised an iteration-based algorithm to solve them in an 

alternating manner.  

Initially, a closed-form solution is obtained for the active beamforming. By employing 

optimal transmit beamforming, the issue of optimizing passive beamforming in fractional 

programming is transformed into associated parametric sub-problems. Furthermore, the 

method of successive convex approximation is employed to tackle the non-convex issue 

of optimizing the trajectory of the UAV. This requires transforming the problem into a 

convex form, which establishes a minimum value for the original problem. 

This study (Yang et al., 2020) presents friendly jammer-based approach where jammer-

UAV assist the transmit-UAV in defending from GEs. More precisely, the UAV-based 

transmitter transmits secret information to the Users, while the jammer-UAV use 3D 

beamforming to send AN signal to the GEs. The authors proposed a DRL-based MADRL 

approach, specifically the multi-agent deep deterministic policy gradient (MADDPG) 

algorithm. This research’s main objective is to enhance the overall secrecy rate by solving 

the convex optimization problem of UAV’s trajectory and IRS variables. To obtain this 

objective MADDPG algorithm utilises a centralised training strategy and distributed- 

execution. In order to enhance learning efficiency and convergence, a novel approach 

called continuous action attention MADDPG (CAA-MADDPG) has been proposed.  

This paper (Song et al., 2022) examines a communication system that IRS and UAVs. The 

UAV is deployed to provide service to user equipment (UE), in the presence of many walls 



 

 

 A Deep Reinforcement Learning approach                         Hussain, T, et al., (2024) 

149 
 

mounted IRSs. The authors strive to enhance the energy efficiency of the system by 

optimising the trajectory of the UAV and the phase shifts of reflecting elements of IRS. This 

optimisation takes into account the movement of the UE and the selection of IRSs, all with 

the goal of reducing energy consumption and maximising the data rate of the UE. Given 

the complexity of the system and the ever-changing environment, it can be quite difficult 

to come up with simple algorithms using traditional optimisation methods. To tackle this 

problem, they initially suggest an algorithm based on deep Q-network (DQN) that 

discretizes the trajectory, offering the benefit of reduced training time. In addition, they 

suggest an algorithm based on DDPG to address the situation where there is a continuous 

trajectory, in order to improve performance. 

Over the past few years, there has been a significant amount of research conducted on 

IRS-assisted communication in (Omar et al., 2023). These studies mainly cover the 

advantages, applications, hardware architecture, and signal model of IRS. The design of 

the transmitter's beamforming and the passive beamforming of the IRS are done 

together. The work (Xu et al., 2022) involves the development of an IRS assisted anti-

jamming UAV-communication system. In this system, a UAV collects data from a GU even 

in the presence of multiple jammers with imperfect CSI. To enhance the desired signal 

and suppress the interference, an IRS is deployed. The IRS achieves this by adjusting the 

phase shifts of its reflecting elements. In (Lin et al., 2023) the authors solved the formulated 

problem of IRS-based UAV communication. These works didn’t include either the jammer 

in UAV-based secure communication or they ignored they tried to achieve secrecy rate 

and UAV trajectory optimization by traditional optimization methods. We proposed the 

complex relationship of the UAV, an IRS mounted on it, a BS and the GU in the presence 

of an eavesdropper along with a friendly jammer. We employed the full potential of DRL 

based dual-DDPG (D3PG) to solve the trajectory and IRS backscatter optimization 

problem of UAV-based IRS. previous studies focused on situations where UAVs were used 

exclusively as mobile BS/jammers, making it difficult to achieve a high-level physical layer 

security. We employed the mobility and adaptability of UAV to enhance the use-case of 

IRS. The main contribution of our work are as follows: 

The Motivated by previous research and the challenges it presents, we are examining 

the security of a UAV network's physical layer. In this scenario, a base station transmits 

sensitive information to a ground receiver with the assistance of a UAV-IRS, all while an 

eavesdropper attempts to intercept the confidential data. There is a jammer in the 

vicinity of the Eves that is causing confusion and interference, and efforts are being made 

to counteract the jammer and ensure that the confidential information can reach its 

intended destination. We collaboratively enhance the physical layer security by 

optimising the trajectories and transmit power of the UAV, taking into account mobility 

and power constraints. The resulting optimisation problem for the trajectory optimization 

of UAV, and the IRS backscatter coefficient matrix optimisation is non-convex can’t be 

solved with traditional schemes. Thus, we employed the DRL-based algorithm to solve the 

said non-convex optimisation problems. It is important to note that, here two different 

and complex types of convex problems are encountered, therefore we have to use dual 

neural networks or we have to apply the DRL based algorithm twice, to achieve the 

desired optimization for both UAV and the IRS.  

SYSTEM MODEL 
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Consider an IRS-assisted secure communication system including a ground BS, in the air 

IRS-assisted UAV, a GU, one malicious eavesdropper, and one friendly jammer as shown 

in Figure. The IRS has Lr number of x-y oriented elements, while GU and eve are equipped 

with a single antenna. The received signal at IRS can be expressed as: 

𝑦𝐿(𝑡) =  𝐺 𝑥(𝑡) + 𝑛𝐿 ,       (1)                                                

x(t) implies for the transmit vector for BS nL ϵ 𝐶𝑁𝐿𝑥1, stands for the Additive White Gaussian 

Noise(AWGN) with zero mean, , G ϵ 𝐶𝑁𝑏𝑥 𝑁𝐿, represents channel from BS to UAV-IRs , Nb 

shows the number of BS antennas and NL represents the reflecting elements of IRS. For this 

channel model we have the G for the BS to IRS , IRS-GU and IRS-Eve channels hLu and hLe 

respectively. And the phase shift matrix ɣ is represented as:  

ɣ=diag(𝛼1𝑒𝑗𝜃1 , 𝛼2𝑒𝑗𝜃2 , 𝛼3𝑒𝑗𝜃3…𝛼𝐿𝑒𝑗𝜃𝐿 )H,(2) 

j = √−1
 

, θ ∈ [0, 2π] , α ∈ [0,1] and θ or α represents the amplitude and phase shifts of the 

IRS matrix. 

CHANNEL MODEL 

Suppose a system that uses a three-dimensional Cartesian coordinate. In this system, the 

ground base station is located at the origin (0,0,0). The UAV's position is represented by 

(x, y, H), while the GU, jammer and Eve are pointed at (xu, 0,0), (xj, yj,0) , (xe, ye, 0) 

respectively. The distances from the BS to the UAV, the UAV to the GU, the UAV to the 

eavesdropper, jammer to the GU and jammer to the eavesdropper are represented by 

dbL , dLu, dLe, dju and dje respectively. The connection between the UAV and the GU or 

eavesdropper can be described as an A-2G channel, which is influenced by the 

propagation characteristics of the surrounding environment, as well as the altitude and 

elevation angle of the UAV. 

 

 
Figure 1.  

System model and channels 

 

In the absence of obstacles, the A2G channel encounters free space path loss. However, 

in urban environments, the presence of buildings or trees might cause extra path loss in 
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addition to the current free space path loss. Thus, the A2G channel model can be 

depicted as   

PLζ   = PFS(t) + χζ ,                  (3) 

Where PFS(t), is the notation used to describe the free space path loss and is is further 

described as: 

PFS(t) = 20 log(d(t)) + 20 log(f) + 20 log(4π/c),           (4) 

In the above equation d(t) is the instantaneous distance between the UAV-IRS and GU, 

represented in 2-D cartesian plane as d(t) = √(x(t)  −  𝑥0)2 + (y(t)  − 𝑦0)2 +  H(t)2 . 

In the above equations the ‘f’ and ‘c’ represents the carrier frequency and the light 

speed, χζ is the average path-loss affected by LoS and NLoS factors and ζ expressed as 

LoS and NLoS ζ ϵ {LoS, NLoS}. With the free space path-loss, the channel gain between 

IRS-UAV to GU, IRS-UAV to BS, IRS-UAV to Eve for the LoS are respectively calculated as: 

 

𝐡𝐋𝐮
𝐇2

= 𝑑𝐿𝑢 −2Ω0  =  
Ω0

(𝑥 − 𝑥𝑢)2 + 𝑦2 + 𝐻2
                (𝟓)

𝐆2 = 𝑑𝑏𝐿  −2Ω0  =  
Ω0

𝑥2 + 𝑦2 + 𝐻2
                                (𝟔)

𝐡𝐋𝐞
𝐇2

= 𝑑𝐿𝑒 −2Ω0  =  
Ω0

(𝑥 − 𝑥𝑒)2 + (𝑦 − 𝑦𝑒)2 + 𝐻2
     (𝟕)

 

𝐡𝐣𝐮
 = 𝑑𝑗𝑢 −2Ω0  =  

Ω0

(𝑥𝑗 − 𝑥𝑢)
2

+ 𝑦2
                            (𝟖)

𝐡𝐣𝐞
 = 𝑑𝑗𝑒 −2Ω0  =  

Ω0

(𝑥𝑗 − 𝑥𝑒)
2

+ (𝑦𝑗 − 𝑦𝑒)
2              (𝟗)

 

Ω0 represents the power of the channel at the reference distance of d0 = 1 m. LoS and 

NLoS may encounter through different set of probability, therefore the probability LoS link 

can be expressed as: 

𝑃𝐿𝑜𝑆(𝑡) =
1

1+𝑎exp [−𝑏(sin−1 (𝐻(𝑡)/𝑑(𝑡)−𝑎)]
 (10) 

Where, a and b are environment related variables. For improving the accuracy of 

jamming with detection avoidance by receivers, we employ beamforming to send 

jamming signals via UAV jammers. 

Beamforming is a powerful technique that allows for precise signal transmission to a 

specific direction. Precise targeting of signals can be achieved by manipulating the 

elevation and angle of azimuth of the beam. Therefore, the jamming signals can be 

accurately directed towards the GEs, without causing any interference to the GU. The 

received data rate at time slot t can be expressed as 

𝑅𝐺𝑈(𝑡) = log2 (1 +
𝑃𝑇

𝑃𝐿𝑈𝑉,𝜎𝐺𝑈 
2 ),             (11) 
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Here PT is the maximum power transmitted from the BS, 𝑃𝐿𝑈𝑉  is the path loss from the UAV, 

to the GU and 𝜎𝐺𝑈
2  is the noise power for the GU. It is important to note there is no signal 

effect at the GU, because the signal reaching at the GU will be cancelled out by GU, 

because we have friendly jammer that will only affect or disturbs the eavesdropper in the 

scenario. Similarly, the signal reaching at the Eavesdropper expressed as: 

𝑅𝑒
 = log2 [1 +

𝑃𝑇

𝑃𝐿̅̅̅̅ 𝑉𝑒( 
𝑃𝐽

𝑃𝐿𝑒
|𝐚(𝑁ℎ,𝑁𝑣,𝜃,𝜙)|2+𝜎𝑒

2)
] (12)                       

In the eq (12) |𝐚(𝑁ℎ , 𝑁𝑣 , 𝜃, 𝜙)| is the steering vector function of UAV given in (Kaur et al., 

2024) and 𝜎𝑒
2 is the noise power of the eavesdropper. 

Problem Formulation 

When it comes to find the secrecy rate, we follow the Shannon’s formula of the secrecy 

rate which is represented as: 

 

𝑅𝑠((x, y), ɣ) = log [1 +
𝑃|(ℎ𝐿

𝐻ɣ𝐆)|
2

µ2 ] − log [1 +

𝑃|(𝑔𝑟
𝐻ɣ 𝐌)|2

µ2
]                                 (𝟏𝟑)

 

Where µ2 is represents the noise power, now 

Let we assume that v = (𝛼1𝑒𝑗𝜃1 , 𝛼2𝑒𝑗𝜃2 , 𝛼3𝑒𝑗𝜃3…………𝛼𝐿𝑒𝑗𝜃𝐿 )H, then  ɣ = diag (𝐯*). With 

these approximations, hence the problem can be formulated as: 

 

max
ɣ,(𝑥,𝑦)

  𝑅𝑠,

 s. t. ɣ = diag(α1ejθ1,  α2ejθ2, α3ejθ3…αLe
jθL)H,

𝑤ℎ𝑒𝑟𝑒, 𝜃𝐿 ∈ [0,2𝜋],    𝛼𝐿 ∈ [0,1]

 |𝐯(𝑖)| = 1, 𝑖 = 1, … , L             (𝟏𝟒),          

        

DRL-BASED SOLUTION 

With the goal to address problem (14), we present a Dual DDPG (D3PG) algorithm that 

enables the agent to acquire knowledge of the beamforming and trajectory policies 

without any prior understanding of the system. Given the complex relationship between 

the UAV trajectory P and the highly dynamic CSI, it becomes challenging to handle such 

complicated problem. Therefore, in order to address this problem, Instead of utilizing a 

single agent in the standard network based on DRL, two DDPG networks are formed to 

segregate these factors. Specifically, the initial network utilizes the CSI, or HS, in as a state 

to calculate G and ɣ. When the Agent starts interacting with the environment the 

coordinates of location and direction of UAV,GU including eavesdropper, are used as 

the state to determine the movement of the UAV. This movement includes the flight in x-

axis ɸ[n], UAV’s direction Ψ[n] at each time slot. In the D3PG scheme both of the neural 

networks have same reward function and optimizer. 
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ACTIVE AND PASSIVE BEAMFORMING OPTIMIZATION 

Fostering on previous research, a pioneering DDPG network is utilized to acquire the most 

effective strategy for the reflecting beamforming matrix ɣ for the IRS through active 

interaction on surrounding system model. The working parameters of proposed DRL 

model are described as follows: 

• State sn,1: It represents the agent’s initial interaction with taking input as CSI and 

other UAV parameters in the n-th time slot. In addition, h doesn’t have the value in small 

scale component beforehand by the UAV. The collection of small-scale information 

could be in real-time to monitor the network's status. This algorithm can adapt to changes 

in the environment as they occur.  

• Action an,1  : First, IRS’s passive beamforming matrix ɣ and the active beamforming 

matrix ‘G’ as part of the action. It's important to mention that G and ɣ split into M = Re{G} 

+ Im{G} , or ɣ = Re{ɣ} + Im{ɣ} in order to address the issue with real input. 

• Reward rn,1 : The agent interacts with the environment and then receives some 

reward as action on the basis of interaction. The reward function in this case expressed 

as: rn,1 = tanh( RSEC – K1Þm  – K2Þs  – K3Þg ), where  Þm , Þs , Þg are the penalties for the 

environment. If the required conditions haven’t met in the following constraints, then the 

by policy it will give it a penalty. In the reward function – K1, K2, K3 are the are the weights 

variables used to keep balance between the penalty and sum rate. This can be 

approximated as 1 - Pr{Rsec ≥ 𝑅𝑠𝑒𝑐
𝑚𝑖𝑛,} ≈ Noutage/Nsample, where Noutage represents the total 

samples where the Rsec is less than required Rsec,, and Nsample represents the total number 

of generated samples during the process. 

UAV-TRAJECTORY OPTIMIZATION 

The second DDPG agent is employed in the neural network to acquire the UAV's motion 

ɸ[n], and direction Ψ[n] for G or ɣ. The reward taking function from the state is described 

as:  

• The state sn,2: DDPG algorithm takes continuous state space, which consist of big data 

collection. Therefore, to find best convergence rate and optimal policy we only 

consider the UAV location into the neural network. 

• The Action an,2: Agent’s action comes with the flight distance horizontally ɸ[n], and 

the direction ψ[n]. After that, The UAV's trajectory can be optimized by utilizing D3PG. 

The trajectory of the UAV at the n-th time slot can be represented as: q[n +1]−q[n]= 

ɸ[n](cosψ[n]ex +sinψ[n]ey), where ex, ey are the unit vector on the X-axis and the Y-

axis.  

• The Reward rn,2: Both of neural networks are set to work on same reward policy, that’s 

why reward function of DDPG’s UAV trajectory optimization will also be same.   
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Figure 2.  

DRL based Model for UAV based secrecy rate maximization   

When the training process nears convergence, the initial network determines the optimal 

method for both active and passive beamforming, while the second network computes 

the ideal trajectory. The utilization of a mutually agreed upon reward function and the 

exchange of information regarding the surroundings augment the synchronization 

between these two networks, allowing them to learn and develop a beneficial strategy. 

Consequently, the beamforming matrix (G, ɣ), and the UAV trajectory Q are acquired 

using the proposed D3PG technique. The D3PG system we propose operates in real-time 

and is capable of capturing the instantaneous Channel State Information (CSI) at every 

time slot, including the rapidly changing elements. In contrast, the offline mode involves 

preloading beamforming policy and UAV’s trajectory beforehand and remains 

unaffected by alterations in the dynamic environment. 

Computational Complexity Analysis of proposed scheme 

This section specifically addresses the computational difficulty in the proposed D3PG 

algorithm. More precisely, let L represent the layer numbers of the DNN utilized in agent’s 

networks, and let ni represent the number of neurons in the i-th layer. Concerning the 

training mode, the computational cost for a single DNN to assess and update in a solitary 

step can be mathematically represented as ©(Nb(∑ 𝑛𝑖,   𝑛𝑖+1 𝐿−1
𝑖=1 )) , while Nb represents the 

mini-batch size used in the DDPG. The D3PG algorithm consists of a finite number of DNNs 

and requires Nep * Nstep steps to complete training. As a result, the overall computational 

complexity of the D3PG has been reduced, which ultimately effects on required secrecy 

rate. The Overall reduced computational complexity of algorithm for training is ©( Nep 

Nstep Nb(∑ 𝑛𝑖,   𝑛𝑖+1 𝐿−1
𝑖=1 )). When working online, we can greatly decrease the computational 

complexity at each step by terminating the training process whenever the network's 

performance reaches a stable state. This aids in maintaining the computational 

complexity at a desirable level and results in a satisfactory convergence of the method. 

RESULTS AND DISCUSSIONS 

Here, we present numerical results to assess the efficiency of the offered D3PG algorithm. 

Our initial DDPG network, consists of two fully-connected hidden layers are utilized, with 

[128,256] neurons in both the actor and critic networks. We’ve used Adam optimizer for 

training the actor network, employing a learning rate of 0.0001, while the critic network is 

trained with a learning rate of 0.001. The 2nd network also has a similar structure to the first 

network, but with the number of layers as [ 128,256]. The D3PG model undergoes training 
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over 1400 episodes, with each episode consisting of 300 time slots. The starting positions 

of the UAV and the fixed RIS are defined as (0m, 20m, 40m) and (0m, 40m, 15m) 

respectively. The eavesdropper is located at coordinates (42m, −7m, 0m). We’ve used 

the tanh activation function at the output and Relu activation function at the output and 

input layers respectively. Similarly, the power transmitted for the BS and Jammer varies 

between the 15 to 40 and 18 to 36 dBm. 

The fig 3 illustrates the relationship between the secrecy rate (bps/Hz) and the transmit 

power (dBm) in a communication channel. The guaranteed secrecy rate refers to a 

transmission rate that ensures the confidentiality of information by effectively protecting 

it from unauthorized eavesdroppers. The x-axis Transmit Power (dBm) - In this context, the 

transmitter emits signals with varying power levels, higher dBm values guarantees a 

stronger signal. The Y-axis represents the Secrecy Rate, which measures the rate at which 

secret data can be transmitted over the channel while maintaining data confidentiality 

in a secure manner. 

 

 
Figure 3. 

Transmit power Pt Vs Secrecy rate  

Reduced power lessens the strength of the signal and signal is prone to being disguised 

by the surrounding noise and can also be captured by any eavesdroppers, hence 

lowering the secrecy level. Increasing the transmit power results in a faster successful 

transmission of a strong signal. A strong signal will mitigate the impact of noise and the 

Instances of communication errors may not occur as frequently in comparison to 

transmission faults. The enhanced quality of the signal raises the likelihood of preventing 

others from intercepting and deciphering it.  

The figure 4 illustrates three lines representing the results of three algorithms (DQN, SCA, 

and Proposed DDPG) utilized for controlling the IRS elements. Among all the 

configurations of reflective elements examined, the D3PG exhibits the highest secrecy 

rate. This suggests that the DDPG technique possesses sufficient capacity to effectively 

utilize IRS aspects in order to achieve a high level of secrecy rate.  In the DQN line, the 

secrecy rate is lower than that of the DDPG line, but higher than that of the SCA line when 

the number of IRS elements is changed. The statement suggests that the DQN algorithm 

incorporates IRS features to some extent in order to achieve a level of secrecy rate. 
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Figure 4. 

IRS elements Vs Secrecy rate 

 

 However, the secrecy rates achieved by DQN are not as impressive as those produced 

by the DDPG algorithm. The successive convex approximation (SCA) graph represents 

the maximum level of confidentiality allowed for the IRS parameters. Consequently, the 

SCA algorithm is not preferred when it comes to using an IRS to achieve a higher level of 

secrecy rate. The secrecy rate of the three algorithms increases as the number of 

reflecting parts of the IRS increases. Therefore, it can be inferred that incorporating 

additional IRS components will improve the level of security in communication channels. 

By employing narrower beam steering, the IRS has the potential to accurately guide the 

signal towards the intended user rather than unintended listeners. Simultaneously, this can 

enhance the signal-to-noise ratio at the receiver, so impeding an adversary's capacity 

to intercept the communication. 

 Increasing the number of IRS element results in a more advanced manipulation of radio 

waves. In our case by effectively optimizing the G and ɣ we can effectively use the IRS 

to increase the secrecy rate and the Data rate of the GU. By selectively focusing on 

specific signals or manipulating their diffraction, the IRS can create more intricate 

interference, thus obstructing the capacity of eavesdroppers to reassemble the data. 

The graph indicates that DDPG performs better than DQN, most likely because it is 

specifically designed for continuous control (such as UAV movement) and has less 

overestimation. Optimizing the trajectory of the UAV is of utmost importance. Moreover, 

employing two distinct DDPG agents, one dedicated to trajectory and the other to 

secrecy (through IRS manipulation), enables them to concentrate on their respective 

objectives without any disruption. The specialization and potential synergy among the 

agents are likely factors that contribute to the overall improved performance reported in 

the dual DDPG strategy.  

Figure 5 illustrates the performance of the DDPG algorithm when applied to the friendly 

jammer system, which effectively prevents eavesdroppers from accessing confidential 

data. The figure demonstrates that the DDPG algorithm effectively controls jammers to 

disrupt the eavesdropper without compromising the conversation. DDPG has the 

capacity to identify the eavesdropper's location, their level of capability, and their 

vulnerability to jamming. It can then generate jamming signals based on this information. 
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Figure 5. 

Jamming power Vs secrecy rate 

DDPG accurately calculates the jamming power based on environmental parameters. 

Adjusting the level of jamming can either enhance the obstruction area surrounding 

authorized communication or reduce interference on your own channel. The algorithm 

selects a jammer that employs techniques such as frequency hopping and noise 

injection to prevent the eavesdropper from accurately determining the true signal. The 

DDPG algorithm demonstrates its advantage in protecting communication channels 

from friendly jammers by maintaining a stable or increasing secrecy rate as the jamming 

force grows. This example demonstrates the proficiency of reinforcement learning in 

producing intelligent jamming tactics that confuse eavesdroppers. 

This figure 6, illustrates the number of training episodes, where each episode represents a 

complete encounter cycle with the environment. During each episode, rewards are 

obtained and the action policy is updated based on these rewards. The Y-axis represents 

the average reward obtained by the DDPG algorithm in each episode. Indeed, in this 

context, the term "reward" refers to the extent of information revealed throughout the 

episode. An important indicator is the algorithm's ability to accurately determine the 

optimal rate of achieving the secret as the number of episodes increases. 

 
Figure 6.  

No of Episodes Vs Reward 

The figure represents curve that shows the relation to the number of episodes (X-axis) vs 

the reward (Y-axis). Based on this figure, we can assert that the DDPG algorithm is 

approaching convergence. Convergence, in this context, refers to the algorithm's 

gradual improvement in performance (accuracy grade) over time. As the number of 
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episodes increases, the average reward consistently remains close to a certain value, 

indicating that the learning process effectively generates a practical method for 

achieving a high secrecy rate. 
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