

ASIAN BULLETIN OF BIG DATA MANAGMENT

Vol. 4. Issue 4 (2024)

https://doi.org/ 10.62019/abbdm.v4i4.252

129

Android Security Vulnerabilities, Malware, Anti-Malware Solutions, and

Evasion Techniques
Mahtab Khalid, Ahthasham Sajid*, Muhammad Usman, Mehak Saeed, Malik Muhammad Nadeem,

Ishu Sharma

Chronicle Abstract
Article history

Received: 21st November, 2024

Received in the revised format: 1st

December, 2024

Accepted: 18th December, 2024

Available online: 21st December, 2024

This paper investigates the vulnerabilities inherent in the Android

operating system architecture and examines how malware

developers exploit these weaknesses to execute a variety of attacks.

These include aggressive advertising, remote control capabilities,

financial fraud, privilege escalation, and the leaking of sensitive

information. In this paper, we survey a collection of anti-malware

techniques and organize these techniques into three canonical

classes (static methods, dynamic methods, hybrid methodologies)

according to how they are used or implemented with respect to the

host operating system. We also evaluate the effectiveness of these

techniques against certain types of attacks and summarize them

under test categories for reporting results. We also examine the typical

countermeasures used by malware authors to disguise their

approaches against existing detection methods, such as

reintegrating with real applications, using update payloads,

executing dynamic code, scrambling dangerous content, and

setting traps to act upon only purposely triggered situations. In future

work, we suggest research into the capability of reinforcement

learning methods to further increase sustainability and adaptability of

anti-malware strategies. This Research study aimed at creating more

dynamic detection systems for malware by utilizing machine learning

techniques that could change in parallel with the tactics used by

malware developers. By leveraging this technique, you could

drastically boost the efficacy of existing anti-malware solutions that

are unable to respond to new threats. As the digital environment

changes (and continues to change), Mobile provides threat analysts,

fraud / security managers and legal authorities up-to-date

circumstantial direction so users can move with confidence within

their mobile landscapes.

Mahtab Khalid, Ahthasham Sajid,

Muhammad Usman, Mehak Saeed

and Malik Muhammad Nadeem are

currently affiliated with Department of

Information Security and Data Science,

Riphah Institute of Systems Engineering,

Riphah International University

Islamabad, Pakistan.

Email: mqazimahtab1162@gmail.com

Email: ahthasham.sajid@riphah.edu.pk

Email: usman.s@oulook.com

Email: mehaksaeed1009@gmail.com

Email:nadeemsandila1989@gmail.com

Ishu Sharma is currently affiliated with
Department of Computer Science and

Engineering, Chandigarh Engineering

College, Chandigarh Group of

Colleges Jhanjeri, Sahibzada Ajit Singh

Nagar, Punjab, India
Email: ishu.sharma001@gmail.com

Corresponding Author*

Keywords: Android Malware detection, Permission on Android, Dangerous Permission, Malicious Code on Android.
 © 2024 EuoAsian Academy of Global Learning and Education Ltd. All rights reserved

INTRODUCTION

Mobile phones, first introduced into our daily lives during the 1990s, were initially created

for the purposes of sending text messages and making phone calls. However, with

advancements in technology and the rise of mobile internet, they have evolved to enable

a wide range of tasks with ease. Smartphones have become indispensable tools for daily

tasks, from shopping and reading news to handling banking transactions and staying

connected via social media, making them a crucial part of contemporary life.

Smartphones run on a variety of operating systems such as Android, iOS, Samsung, KaiOS,

BlackBerry OS, Tizen, and Windows Mobile. By the close of 2022, Android dominated the

market, with a share of 71.75%. Projections for 2023 estimate around 3.6 billion active

Android users worldwide across 190 countries. Android holds 70.94% of the global mobile

mailto:mqazimahtab1162@gmail.com
mailto:ahthasham.sajid@riphah.edu.pk
mailto:usman.s@oulook.com
mailto:mehaksaeed1009@gmail.com
mailto:nadeemsandila1989@gmail.com
mailto:ishu.sharma001@gmail.com

Android Security Vulnerabilities, Malware, Anti-Malware Solutions Khalid, M., et al. (2024)

operating system market, while Apple's iOS accounts for 28.33% Turner, A. (2022). Google

developed Android, a rapidly growing, open-source, and fully customizable mobile

operating system. It offers an open platform that allows Original Equipment Manufacturers

(OEMs) like Samsung, Xiaomi, Oppo, Vivo, Huawei, Motorola, and Google full access and

control over the system. This flexibility has allowed these manufacturers to offer devices at

significantly lower price points, especially when compared to the average sale price of

Apple iOS devices, which was $261 in the fiscal year 2021. This pricing strategy is a key

factor in Android's widespread success. Furthermore, the Android operating system is

widely used in smartphones, wearable devices, and smart TVs Android TV. (n.d.). With the

growing number of app downloads from platforms like Google Play and the App Store,

concerns about security have become more prevalent. Malware, which has long

affected computers, is now infiltrating smartphones. Malicious software can result in

various damaging consequences, such as unauthorized access to personal data,

monitoring of user activities and locations, hacking of social media accounts, breaches

of banking information, unauthorized message sending, and a decrease in both memory

capacity and battery life Marko M. (2019, November 15). The rapid expansion of Android

applications, coupled with its position as the leading operating system, has made it a

major target for malicious software.

As technology continues to advance and reshape our daily lives, the number of

smartphone and smart device users for both personal and business purposes is rapidly

growing. Android, the most widely used operating system in this domain, accounts for 87%

of users Nick Jasuja. (2019). Many smart device manufacturers back Android, which was

first launched in September 2008 as a Linux-based, open-source platform supporting over

100 languages. Android apps are widely available through multiple app stores, such as

Google Play, Amazon, Aptoide, and Galaxy Store. The vast selection of millions of apps

has played a significant role in Android's popularity over other operating systems (2024).

Av-Test.org. Yet recently, as the amount of apps and users has grown considerably,

Android APKs have increasingly become a prime destination for greedy hackers looking

to profit. Other — According to the latest AVTest security report an average of over

600,000 malware applications are being distributed each month. The report identifies

common vulnerabilities and reveals trends based on an analysis of attack patterns.

As one example, the 2019 report highlighted that the majority of attacks used hardware

architecture vulnerabilities to access memory content and could compromise sensitive

data such as passwords. It also puts a year-by-year lens on the kind of attacks that have

been launched, with 2019 being a particularly bad year for Windows devices specifically

targeting them. A more substantial proportion of the sort of attacks that we saw targeted

at Android OS reported each year, in both numbers and types, a wide range of threat

levels. According to AVTest. This emerging threat highlights the importance of a systematic

study of malware behaviors for creating high-performance detection and classification

methods Kivva, A. (2023, June 7). So, in the following section, we will now concentrate on

Android malware- its different forms and what strategies we could follow for defending

against that malicious software.

In many cases it is impossible to carry out adequate security checks on all the applications

released due to the high rate at which they are developed, so some apps will make it

through time and again with unnoticed embedded vulnerabilities that can compromise

the devices of end-users. Malware developers are also becoming more creative when it

comes to hiding malicious payloads inside complex GUI widgets small app views that can

Asian Bulletin of Big Data Management 4(4), 129-145

131

be embedded in other apps (think of one your home screen weather widget updates,

but rounds up to a very big number). This makes it difficult for malware analysis tools to

identify and analyze the hidden threats. Please realize that the processing power, storage

and limited battery life of the smart devices are very small and these traditional "PC anti-

malware" techniques require a huge amount of resources. Moreover, traditional anti-

malware methods, mainly based on signature-based antivirus (AV) solutions, are

inadequate for detecting and preventing new malware variations since malware

continually modifies its signature patterns. As these threats evolve, they necessitate more

sophisticated detection strategies. Signature-based AV systems depend on a fixed set of

malware characteristics for identification and classification, but malware can easily

evade these defenses using techniques such as obfuscation or encryption. Consequently,

alternative anti-malware techniques, including static and dynamic analysis, are being

increasingly employed to combat these advanced attacks.

As reported by the Kaspersky Security Network, approximately 4,948,522 attacks involving

mobile malware, adware, and risky software were blocked in the first quarter of 2023.

Adware constitutes the most common threat to mobile devices, accounting for 34.8% of

all detected threats Mathur, A et.al (2021). . In recent years, the Android operating system

(AOS) has rolled out multiple updates to tackle various security vulnerabilities Mathur, A.

(2022). The main defense mechanism in Android is Google Play Protect, which detects

and mitigates malicious applications found in the Google Play Store. However, many third-

party app stores allow users to download potentially harmful software. Furthermore, the

Android OS utilizes a permission-based access system to prevent applications from

obtaining unauthorized access to sensitive resources, such as cameras, microphones, and

internal file storage Permissions on Android. (2024). The Android Market Security Model

functions similarly to the Linux security model, where permissions are based on user

consent. A user cannot read, modify, or execute another user's files without explicit

permission.

When applications are installed, they must request permissions from the user, which are

based on the resources they intend to use and the areas they need to access. These

permissions are outlined in the AndroidManifest.xml file within the APK (Android

application package) Marko M. (2019, November 15). Malicious software, such as Trojans,

ransomware, spyware, and worms, frequently exploits users who are unaware of Android's

permission system, thereby jeopardizing their data. This underscores the need for user

education regarding Android permissions. In the security model of the Android operating

system, the responsibility lies with the individual installing the app to consciously grant

these permissions. Third-generation app developers may use these permissions either

intentionally or unintentionally. Ultimately, it is the user's duty-the person installing the app-

to assess whether the requested permissions are essential for the app's functionality and

to grant them accordingly.

Android Architecture

The Android operating system is organized into six main layers: The Application layer,

Application Framework, Libraries, Android Runtime, Hardware Abstraction Layer, and the

Linux Kernel (Figure 1). Each of these layers is essential to the overall functionality and

security of the system.

Android Application Layer

Android Security Vulnerabilities, Malware, Anti-Malware Solutions Khalid, M., et al. (2024)

The Android application layer allows developers to utilize the device's existing

functionalities, such as accessing hardware features (like the camera, GPS, and sensors)

and integrating with system services (such as notifications, data storage, and network

access). This capability enables them to create applications that interact seamlessly with

the device's features.

Figure 1:

Android Platform Architecture

APPLICATION FRAMEWORK

The application framework is frequently used by developers and provides a range of

higher-level services to applications through Java classes. These services enable

developers to manage user interfaces, resources, and system functions more effectively,

thereby simplifying the app development process.

Native Libraries

Android includes an open-source Web browser engine based on the open source WebKit,

a well-established database for data storage; SQLite (a lightweight relational database

management system) and support for many other standard c libraries. Libc and Libutil are

system libraries, they provide essential functions of a given system. The native libraries are

Asian Bulletin of Big Data Management 4(4), 129-145

133

the core building blocks of android exposed with C, C ++ by providing performance —

critical capabilities that serve as a base for the running system runtime and higher-level

frameworks.

Android Runtime

The Android Runtime (ART) is like the third section, which comes under second layer from

bottom in Android architecture. Down here is the crucial layer which houses Dalvik Virtual

Machine (if you are still using it) or Android Runtime (ART, in case your version of Android).

They facilitate execution of Android application code in an efficient manner, by

translating app's Java-based code into system interpretable machine code intended for

the processor. Last but not least, the Android Runtime manages memory and process

lifecycle to ensure a bug free experience of running the apps.

Hardware Abstraction Layer

The HAL provides a standard API for creating software that is compatible with the

hardware and Android API framework to exchange control data with regard to camera,

Bluetooth, audio, sensors etc. HAL gives developers access to hardware features with a

standardized interface, abstracting low-level hardware details from the application and

making applications work consistently across multiple devices.

Linux Kernel

The kernel of the Android operating system is derived right from the open-source Linux

Kernel, that sits at the core part. Functions such as memory management, process

management, and device drivers are all controlled by the kernel. Similarly, also at the

kernel level, a number of userspace services and libraries interact with these HALs

facilitating communication between the Android system's hardware aspects and their

software types. Improving stability, performance, and security from devices to the edge.

Androidmanifest.XML FILE

Every Android application has to have an AndroidManifest. This file contains metadata

emulated in xml format, which tells the system about all the application components such

as activities, services, broadcast receivers and content providers. These components are

not executable unless declared in the manifest. Usually it contains what kind of device

needs a camera, heart rate sensor or GPS etc. Also, the app needs to get permission from

the user for accessing data that is protected by default (such as addresses, cameras, or

other location information) This item is telling to AndroidManifest that I need these required

permission. xml file. In a nutshell, this file is used for informing the operating system about

the application properties and specifics so that it can keep track of its details and manage

interactions. The primary components typically found in the manifest file include:

Package Name: This serves as a unique identifier for the application, distinguishing it from

others.

Minimum and Maximum API Levels: Specifies the range of API versions with which the

software can interact.

Component Description: Details the activities, services, broadcast receivers, and content

providers utilized by the application.

Android Security Vulnerabilities, Malware, Anti-Malware Solutions Khalid, M., et al. (2024)

Library List: Enumerates the libraries that the application will rely on.

Permission Declarations: Outlines the permissions required by the application to access

and interact with specific components.

Common Types of Malicious Code on Android

Malicious code targeting Android devices can take various forms, each designed to

exploit vulnerabilities and compromise user security. Understanding these common threats

is crucial for users and developers alike to implement effective security measures and

protect against potential attacks. Common types include:

Figure 2:

Types of android Malware

Worms: Worms are a type of malware that can replicate themselves and transfer files to

other devices. On Android devices, these worms are typically disseminated through SMS

or MMS text messages and often execute automatically, without requiring any user

intervention.

Trojans: Trojans are deceptive software programs that often disguise themselves as

legitimate applications. They may be bundled with useful software but are designed to

perform harmful actions, such as collecting personal information and stealing account

credentials.

Spyware: Spyware is a type of software that gathers and transmits personal information

without the user's consent. This software monitors users by recording their location,

account details, and other sensitive information, sending it to a remote server. Many

spyware programs are bundled with seemingly harmless applications, operating quietly in

the background and making them challenging for users to detect.

Asian Bulletin of Big Data Management 4(4), 129-145

135

Ransomware: Ransomware is a type of malware that is designed to lock users out of files

on their computers, images, videos and even compressed or archive file format. In cases

like these, users would have to pay a ransom if they want to recover their access back.

Also ransomware can lock the device itself, making it an expensive ruse to reinstate

access to the user.

Adware: Adware is a type of malicious software designed to display advertisements on

the user's screen, generating revenue through ad views. Often masquerading as useful

software or bundled with legitimate applications, adware aims to deceive users into

installing it on their devices.

Backdoor: A backdoor is a type of malware that enables an attacker to remotely control

a device, functioning as if a legitimate user were operating it. A backdoor can exist as

standalone software or as part of a legitimate application, with malicious code

embedded within an existing APK file.

Permissions in Android: Permissions are a crucial aspect of the Android operating system,

with approximately 250 different types available Zhou, Y., & Jiang, X. (2012). They play a

key role in defining the security measures and overall safety of applications. These

permissions are categorized into four protection levels: Normal, Dangerous, Signature,

System permission or Privileged Sihag, V. et.al (2021). .

Figure 3:

Android Permission Levels

Among these, permissions categorized as 'Dangerous' are particularly significant because

they manage users' personal data. If misused with malicious intent, they can jeopardize

users' security and privacy. Therefore, obtaining user consent is mandatory for these

permissions Zhou, Y., & Jiang, X. (2012). For instance, the SEND_SMS permission is essential

for communication and social media applications that facilitate the sending of text

messages. In essence, permissions represent the requests that applications make to the

Android system to gain access to specific features and controls. For instance, if an

application wants to access the internet, it must request permission from the system to do

so. Typically, applications require permissions for Internet access, camera usage, and the

Android Security Vulnerabilities, Malware, Anti-Malware Solutions Khalid, M., et al. (2024)

ability to enable WiFi. These permissions are categorized into two levels: normal and

dangerous. Normal permissions pose minimal risk to user privacy, while dangerous

permissions involve access to sensitive data or system features that could significantly

impact user security. Apps are required to declare their permission requests in their

manifest file However, during the download and installation process, users are presented

with the option to either accept or deny all permissions simultaneously. If a user declines

the permission request, the app cannot be installed. Consequently, many users often

accept all permissions without fully comprehending their implications or the associated

risks. Additionally, apps can also request further dangerous permissions from users at

runtime.

Normal Level Permissions

These permissions present minimal risk to user privacy and have little to no impact on the

system's overall functionality. The Android operating system typically grants these

permissions automatically to applications listed in the Android Manifest file, without

requiring explicit user consent. Common examples of normal permissions for API version 23

are detailed in Table 1.

Table 1:

Normal Permission List
No Permission

1 INTERNET

2 ACCESS_NETWORK_STATE

3 ACCESS_WIFI_STATE

4 BLUETOOTH

5 CHANGE_NETWORK_STATE

6 CHANGE_WIFI_STATE

7 EXPAND_STATUS_BAR

8 READ_SYNC_SETTINGS WILL

9 SET_ALARM

10 VIBRATE

11 WAKE_LOCK

12 WRITE_SYNC_SETTINGS

13 GET_PACKAGE_SIZE

14 RECEIVE_BOOT_COMPLETED

15 SET_ALARM

Dangerous Level Permissions

These permissions pertain to user privacy and can impact other applications or the

functioning of the operating system. Unlike normal permissions, dangerous permissions are

not granted automatically; the user must explicitly approve them when an application

requests access. Examples of dangerous permissions are outlined in TABLE 2.

Table 2:

Dangerous Permission List
No Permission

1 READ_CALENDAR

2 WRITE_CALENDAR

3 CAMERA

4 READ_CONTACTS WILL

5 WRITE_CONTACTS

6 GET_ACCOUNTS

7 ACCESS_FINE_LOCATION

8 ACCESS_COARSE_LOCATION

9 RECORD_AUDIO

Asian Bulletin of Big Data Management 4(4), 129-145

137

10 CALL_PHONE

11 READ_CALL_LOG

12 WRITE_CALL_LOG

13 SEND_SMS

14 RECEIVE_SMS

15 READ_SMS

Malware can take advantage of this permission to communicate with command centers

or send messages to premium-rate numbers, which may lead to unexpected charges.

While granting permissions individually might appear harmless, allowing them together

can drastically increase privacy and security risks. For example, the INTERNET and READ

SMS permissions, when granted separately, pose minimal threat. However, when

combined, they can enable an app to access your text messages and send them to an

external entity Sihag, V. et.al (2021). Whether permissions are considered normal or

dangerous, they must be specified in the Android Manifest file. This declaration notifies the

Android operating system of the permissions the application needs to function correctly.

Librarys in Apk Files

Libraries within an APK (Android Package Kit) file are software components that enable

Android apps to perform specific functions without the need to write code from the

ground up. These libraries can include:

System Libraries

These are libraries supplied by the Android SDK, including components like android.app,

android.content, and android.view. They deliver essential functionalities that are

fundamental to the Android operating system.

Third Party Libraries: These are libraries created by developers that are not included in

the Android SDK. Examples include:

Retrofit: A library for managing HTTP requests.

Glide or Picasso: Libraries for loading and processing images.

Room: A library for handling SQLite database management.

Open Source Libraries: These libraries are freely available and open source, allowing

developers to incorporate common functionalities without the need to build them from

scratch. In this study, we utilize the names of third-party libraries as identifiers.

Android Vulnerabilities

Android vulnerabilities refer to weaknesses within the operating system or its applications

that can be exploited by malicious actors.

Fragmentation Problem: Typically, Google releases an Android update each month, but

it may take several months for these updates to be distributed to users across different

manufacturers worldwide. This delay leads to the presence of multiple Android versions in

use globally, with older versions remaining susceptible to security vulnerabilities that have

been fixed in later updates Bagheri, H. et.al (2017). . For instance, some permissions

deemed dangerous in the most recent update may still be regarded as normal on devices

that have not received the update, thereby heightening the risk of user data exploitation

Faruki, P. et.al (2016).

Android Security Vulnerabilities, Malware, Anti-Malware Solutions Khalid, M., et al. (2024)

Colluding Attack: When users inadvertently install several applications that are signed with

the same developer certificate, those applications are able to share permissions and

access resources. Although each app may request permissions that appear harmless, the

cumulative effect of these permissions can enable malicious activities. Furthermore, each

app can independently access various resources. Since all applications associated with

the same certificate can leverage these resources, one app could collect a considerable

amount of data without triggering any alerts [15, 21].

Malware Functionalities

Malware serves different purposes and employs various attack methods. Some types

disrupt device functionality by launching extensive ad attacks, while others may steal

users’ contacts to spread malicious activity and target additional victims. More harmful

variants can impose financial charges on users or even steal bank account information to

carry out unauthorized transactions. Below, we outline the functionalities of these malware

types.

Figure 4:

Malware Functionalities

Aggressive Advertisement

A common form of malware encountered by users involves bothersome applications that

produce constant pop-ups, hindering the device's functionality. Certain malware can

seize control of the user's device, overwhelming them with ads, changing their default

search engine, and executing other intrusive behaviors, as seen with the Plankton

malware Thomas, D. et.al (2015). .

Remote Control

About 93% of malware employs compromised devices as bots Bagheri, H. et.al (2017). . By

infiltrating a device, this malware can seize control and incorporate it into a botnet-a

collection of devices overseen by a remote server-either to steal information or carry out

attacks, such as denial of service assaults. Notable examples of malware that create

botnets include Beanbot and Anserverbot Thomas, D. et.al (2015). . Beanbot targets

devices to steal information, such as the IMEI number and phone number, sending this

data to a remote server. It can also transmit expensive SMS messages from the device,

Asian Bulletin of Big Data Management 4(4), 129-145

139

depleting phone credits. Anserverbot embeds code onto the victim's device, granting the

hacker remote access. This malware often hides within an app and prompts users to install

what appears to be an update; in reality, this action downloads and installs the remote

control program on the victim's device.

Privilege and Permission Escalation

Approximately 36% of malware utilizes at least one root exploit, although it is common for

multiple exploits to be employed simultaneously. By taking advantage of the Android

vulnerability colluding attack, various forms of malware can work together to share

permissions and gain elevated privileges Arzt, S. et.al (2014). . Notably, permissions related

to SMS are the most commonly targeted; around 45% of malware seeks access to various

SMS functions, such as reading, writing, receiving, and sending messages Faruki, P. et.al

(2015). Malicious software exploits these heightened permissions for a range of purposes.

Additionally, it has been noted that harmful apps generally request more permissions than

legitimate ones. On average, malicious applications seek around 11 permissions, whereas

benign apps typically request about four permissions.

Financial Charge

Certain types of malware leverage remote control and privilege escalation to exploit

compromised devices for financial gain. This can involve sending messages or subscribing

to premium-rate numbers, messaging contacts, or even making phone calls in the

background without the user's awareness Faruki, P. et.al (2015). For instance, DroidSMS

can subscribe users to premium numbers, while Zitmo is designed to capture login

information to facilitate unauthorized financial transactions from users’ bank accounts

Zhou, Y., & Jiang, X. (2012). . A specific type of malware, known as Zitmo, poses a

significant threat to mobile users by targeting sensitive transaction authorization codes.

This Trojan horse malware intercepts and forwards incoming text messages containing

these codes to unauthorized parties, enabling them to carry out fraudulent financial

transactions using compromised accounts. Another malicious software variant that results

in financial losses is ransomware, which restricts device access until the user pays a ransom

to recover their data. This type of malware has been observed in various forms, including

FakeDefender, which exemplifies the malicious tactics employed by cybercriminals to

extort money from unsuspecting victims.

Leaking Information

Applications typically require access to user information to operate and facilitate

communication. However, transmitting this data beyond the user's device without their

awareness or consent constitutes information leakage Arzt, S. et.al (2014). . Over 80% of

malware programs gather personal and device-related details and transmit them to

external servers. These details may include device identifiers like IMEI, IMSI, kernel version,

phone manufacturer, and network operator information Salehi et.al (2019). . Moreover,

malware has the capability to gather SMS messages, passwords, user accounts,

usernames, email addresses and phone numbers. With such data, malicious actors can

commit fraud against users without their knowledge. For instance, the malware FakeNetflix

impersonates the legitimate Netflix app to steal user login credentials and leak them

Faruki, P. et.al (2015).

Malware Analysis Techniques

Android Security Vulnerabilities, Malware, Anti-Malware Solutions Khalid, M., et al. (2024)

To successfully track, identify, and combat malware activities, a lot of research has been

done over the years. This has led to the development of various anti-malware methods,

each using different ways to detect threats. In the following sections, we will explore both

static and dynamic anti-malware techniques, along with cutting-edge tools utilized in

each approach.

STATIC ANALYSIS

Static analysis is a common approach for finding malware by examining and breaking

down Dalvik bytecode without running the code. This approach helps to prevent malware

from disguising or stalling the execution of its actions during the analysis. CHEX or FlowDroid

are such tools that have been developed to scan through the code to detect any

potential vulnerabilities in the app. These vulnerabilities may victimize you as service

provider by leaking some of data back (data leak), or escalating a permission to access,

execute some functions unintentionally. While FlowDroid is employed for the analysis of

sensitive data flows, CHEX is utilized to keep a track of which entry points or potential

routes may lead to such hijacking vulnerabilities; however, both these techniques perform

good only up-to certain extent and some limitations like how they go through implicit flows

into reflective calls. Expanding on these, techniques in Amandroid and Apposcopy help

to identify some more advanced sensitive data leaks.

Amandroid finds misuse of APIs and maps data flows between app components well, but

does not handle concurrency and implicit flows properly. BitAPot detects the malware

family regardless of code obfuscation but not in variants unknown to the predefined

behavior by using signature-based analysis, and apposcopy is a complementary

approach. Tools like EviHunter are for forensic examination, allowing the user to build a

database of evidentiary data so they can compare rival apps. These tools can then help

you stay out of possible patent infringement. However, as with the tools from before they

have issues discovering dynamic payloads that appear only at runtime. Static analysis,

despite several approaches such as SafeDroid and AnaDroid and techniques based on

power consumption to detect dynamic behaviors easily evades it.

DYNAMIC ANALYSIS

Dynamic analysis is another effective technique for detecting and mitigating malware by

executing and monitoring app behavior in controlled environments like emulators,

simulators, or sandboxes. This method simulates user interactions to observe app

functionality, control-flow, and actions, distinguishing between malicious and benign

behavior. Tools such as ServiceMonitor analyze app interactions with system services, using

statistical models like Markov chains and Random Forest algorithms to classify apps based

on their behavior. Although this technique can detect many types of malware, some

evade detection by recognizing the analysis environment, leading to false negatives.

TaintDroid and TaintART track sensitive data as it flows through the system, flagging apps

that transmit data outside the device. TaintDroid focuses on explicit data flows, but

struggles with implicit flows, a limitation also seen in TaintART. Similarly, Droid-AntiRM

improves dynamic analysis by addressing anti-analysis techniques, forcing malicious

behavior to be executed during testing. However, it still cannot handle dynamic code

loading or obfuscation methods used by sophisticated malware Detection of Intrusions

and Malware, and Vulnerability Assessment. (2017). Other tools, such as DroidScope and

several dynamic analysis frameworks like DL-Droid, CopperDroid, and MAdFraud, attempt

to tackle malware detection at different levels. However, they face a common limitation:

Asian Bulletin of Big Data Management 4(4), 129-145

141

many malware programs detect the analysis environment and either avoid triggering their

malicious actions or crash to prevent further investigation. This vulnerability highlights the

challenge dynamic analysis faces when dealing with advanced malware tactics

designed to bypass detection.

HYBRID ANALYSIS

Hybrid analysis techniques combine static and dynamic methods to improve malware

detection. A tool like WifiLeaks uses static analysis to find what permissions an app asks for,

and then application of dynamic analysis to monitor the use of these permissions in data

collections and possible data leaks. WifiLeaks is a research tool designed for the detection

of security degradation in ongoing WiFi access permission, any Android app can be

classified (a malicious one or not) by using Dalvik bytecode get from apk file. EspyDroid

focuses on malware using reflection and obfuscation, we use static analysis to further

reduce the code path for better dynamic analysis. AndroShield is another hybrid solution,

which performs static reverse engineering of APK files to study the code and manifest files.

Then, during dynamic analysis, the app is run and monitored for behavior which could

result in data leaks (e.g. logging sensitive information), crashes, requests being sent

insecurely etc. The other types of hybrid tools such as SamaDroid, AspectDroid and

AndroPyTool mix both of the inspection and behavior extraction, however, they face a

few obstacles in the way as dealing with obfuscation or package signature changes or

their defense mechanisms are not liable to zero-day attacks. Hybrid analysis combines the

advantages of both casual but as discussed, which faces challenges that static and

dynamic analysis do for example advanced obfuscation or some new brewed malware

detection. This has fueled a need for increasingly sophisticated techniques that can

perform modifications and in turn adapt without being centered around innocent or

familiar behavior patterns that other attacks use.

ANTI MALWARE EVASION TECHNIQUES

With the continual propagation of malware, various anti-malware techniques have

become available for treating malware threats. However, malware creators are

constantly evolving and refining their methods to bypass these detection strategies. Here

are some of the most common methods used by malware developers to avoid being

detected by anti-malware software.

Android Security Vulnerabilities, Malware, Anti-Malware Solutions Khalid, M., et al. (2024)

Figure 5:

Anti-Malware Evasion Techniques

Repackaging

Malware developers frequently use reverse engineering to compromise legitimate

Android apps. They start by downloading a popular app, adding harmful code to it, and

then rebuilding the app. The infected version is then republished on official or third-party

app stores. When users unintentionally install the app, they become open to malware

attacks that can take their personal information or make unauthorized purchases. This

repackaging technique is highly prevalent, with over 85% of malware, such as DroidDream

and DroidKungFu variants, employing this method.

Update Payload

Another method malware developers use to evade anti-malware tools is called an

update attack or dynamic payload. Instead of putting all the harmful code directly into

the initial app, they attach the malicious code as an APK/JAR file and encourage users

to install important updates. These updates then download the harmful code from a

remote server. This method evades signature-based and static scanning tools. Malware

families like BaseBridge and Plankton commonly use this technique. Additionally, some

malware, like Opfake, employs polymorphism to alter its code with each update without

changing its functionality. Polymorphism allows malicious code to exploit the same

methods by overriding behavior through inheritance, making it harder to detect.

Figure 6:

Anti-Malware Techniques Vs Malware Tactics

Dynamic Execution

Malware frequently registers to listen for system-wide events such as Boot, Call, and SMS.

When these events happen, the malware activates its harmful code. For instance,

Slembunk uses this method to track user activities, and when the user opens their banking

Asian Bulletin of Big Data Management 4(4), 129-145

143

app, it shows a fake screen that looks like the real app. This enables Slembunk to steal the

user's banking details straight from the infected device.

Code Obfuscation

App developers frequently use code obfuscation methods to protect their intellectual

property from being misused and to make reverse engineering more difficult. This not only

defends their code but also yields a much smaller app that users can run smoothly on their

devices. One of them is an optimization tool used in build process like ProGuard, it

optimizes your app code by removing any unused classes and methods and also

shortening class names to obfuscated names. Still, these same techniques have been

adopted by malware developers as a way to evade detection. Other obfuscation

technique can be used like adding junk code, renaming packages or controlling the flow

of the program. For instance, the Obad malware obfuscates every class and method

name with unreadable strings which makes it almost invisible to the service. And it is

particularly elusive when you can't see them in the list of device administrators, from root

access. In order to prevent those advanced malware, users can disable the auto-

discovery options in Android operating system and to scan their devices with reliable

antivirus software for potential threats as well.

Encryption

Another way to avoid detection is by encrypting code that is only decrypted when the

app is running. Different encryption methods, like string or class encryption, can make

apps more secure. To analyze the malware, researchers need to decrypt it and convert

the encrypted text back to regular text to understand how it works. However, finding the

encryption key can be quite difficult. For instance, Fobus uses the name of the fourth class

and method as a key for the JVM stack, while Obad creates its key from a particular

Facebook page.

Logic Bomb

Some malware can avoid both dynamic and static analysis by not activating their harmful

code when they are run. Instead, they wait for specific events to trigger their harmful

actions, as seen with RCSAndroid. Others may employ a delay before activating their

malicious code, a tactic known as a time bomb, exemplified by HolyColbert. Furthermore,

some malware displays a login screen that asks for user credentials to continue, which

effectively prevents analysis tools from examining the app's functions and actions, as seen

with Zitmo.

CONCLUSIONS AND FUTURE WORK

The study explored the key vulnerabilities in Android, how it is manipulated by malware

developers, and different types of attacks implemented using these weaknesses. These

attacks can range from a simple popup-ad to remote device control, through heavy

frauds, misusing of data privacy protocols and also both online scamming-which usually

ends up being an isolated case- but sometimes ripping out as unauthorized privilege

escalation affecting several other users – causing a never-ending series of data breach.

Based on extensive literature, we have provided an overview of different types anti-

malware techniques and categorized them in to static, dynamic and hybrid methods

while analyzing the effectiveness of these approaches with respect to particular attack

Android Security Vulnerabilities, Malware, Anti-Malware Solutions Khalid, M., et al. (2024)

types as well as datasets utilized during performance evaluation. We also considered

some common techniques malware developers turn to in order to bypass these detection

methods, like repackaging apps, rolling update payloads and dynamic execution, code

obfuscation and logic bombs. Future work will explore reinforcement learning techniques

to address sustainability issues suffered by current anti-malware solutions. The high level

approach for us is to use some machine learning techniques in order to build a more

flexible and durable system that can adapt based on the strategy used by malware

developers. To these API s (we will cover APIs and parameter use cases in more depth

later) the security layer could be added while executing security functionality on

execution level, a single step approach to greatly enhance anti malware tools efficiency

in protecting users from new or emerging threats.

DECLARATIONS

Acknowledgement: We appreciate the generous support from all the supervisors and their different

affiliations.

Funding: No funding body in the public, private, or nonprofit sectors provided a particular grant for

this research.

Availability of data and material: In the approach, the data sources for the variables are stated.

Authors' contributions: Each author participated equally to the creation of this work.

Conflicts of Interests: The authors declare no conflict of interest.

Consent to Participate: Yes

Consent for publication and Ethical approval: Because this study does not include human or animal

data, ethical approval is not required for publication. All authors have given their consent.

REFERENCES

Android TV. (n.d.). Android. https://www.android.com/tv/

Marko M. (2019, November 15). Android vs iOS Market Share Discoveries in 2023. Leftronic.com;

Leftronic. https://leftronic.com/blog/android-vs-ios-market-share

Nick Jasuja. (2019). Android Vs iOS - Difference and Comparison | Diffen. Diffen.com; Diffen.

https://www.diffen.com/difference/Android_vs_iOS

(2024). Av-Test.org. https://www.av-test.org.

Turner, A. (2022, January 12). How Many Android Users Are There? Global Statistics (2023).

BankMyCell. https://www.bankmycell.com/blog/how-many-android-users-are-there

Wang, W., Li, Y., Wang, X., Liu, J., & Zhang, X. (2018). Detecting Android malicious apps and

categorizing benign apps with ensemble of classifiers. Future Generation Computer

Systems, 78, 987–994. https://doi.org/10.1016/j.future.2017.01.019

Kivva, A. (2023, June 7). IT threat evolution Q1 2023. Mobile statistics. Securelist.com; Kaspersky.

https://securelist.com/it-threat-evolutionq1-2023-mobile-statistics/109893

Mathur, A., Podila, L. M., Kulkarni, K., Niyaz, Q., & Javaid, A. Y. (2021). NATICUSdroid: A malware

detection framework for Android using native and custom permissions. Journal of

Information Security and Applications, 58, 102696.

https://doi.org/10.1016/j.jisa.2020.102696

Mathur, A., Ewoldt, E., Quamar Niyaz, Javaid, A. Y., & Yang, X. (2022). Permission-Educator: App for

Educating Users About Android Permissions. Lecture Notes in Computer Science, 361–371.

https://doi.org/10.1007/978-3-030-98404-5_34

Permissions on Android. (2024). Android Developers.

https://developer.android.com/guide/topics/permissions

Shi, S., Tian, S., Wang, B., Zhou, T., & Chen, G. (2023). SFCGDroid: android malware detection based

on sensitive function call graph. International Journal of Information Security.

https://doi.org/10.1007/s10207-023-00679-x

https://www.android.com/tv/
https://www.diffen.com/difference/Android_vs_iOS
https://www.av-test.org/
https://www.bankmycell.com/blog/how-many-android-users-are-there
https://securelist.com/it-threat-evolutionq1-2023-mobile-statistics/109893
https://doi.org/10.1016/j.jisa.2020.102696
https://doi.org/10.1007/978-3-030-98404-5_34
https://developer.android.com/guide/topics/permissions
https://doi.org/10.1007/s10207-023-00679-x

Asian Bulletin of Big Data Management 4(4), 129-145

145

Meijin, L., Zhiyang, F., Junfeng, W., Luyu, C., Qi, Z., Tao, Y., Yinwei, W., & Jiaxuan, G. (2021). A

Systematic Overview of Android Malware Detection. Applied Artificial Intelligence, 1–33.

https://doi.org/10.1080/08839514.2021.2007327

Zhou, Y., & Jiang, X. (2012). Dissecting Android Malware: Characterization and Evolution. 2012 IEEE

Symposium on Security and Privacy. https://doi.org/10.1109/sp.2012.16

Sihag, V., Vardhan, M., & Singh, P. (2021). A survey of android application and malware

hardening. Computer Science Review, 39, 100365.

https://doi.org/10.1016/j.cosrev.2021.100365

Bagheri, H., Kang, E., Malek, S., & Jackson, D. (2017). A formal approach for detection of security

flaws in the android permission system. Formal Aspects of Computing, 30(5), 525–544.

https://doi.org/10.1007/s00165-017-0445-z

Faruki, P., Fereidooni, H., Laxmi, V., Conti, M., & Gaur, M. (2016). Android Code Protection via

Obfuscation Techniques: Past, Present and Future Directions. ArXiv.org.

https://arxiv.org/abs/1611.10231

Thomas, D. R., Beresford, A. R., & Rice, A. (2015). Security Metrics for the Android

Ecosystem. Proceedings of the 5th Annual ACM CCS Workshop on Security and Privacy

in Smartphones and Mobile Devices. https://doi.org/10.1145/2808117.2808118

Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Le Traon, Y., Octeau, D., & McDaniel,

P. (2014). FlowDroid. ACM SIGPLAN Notices, 49(6), 259–269.

https://doi.org/10.1145/2666356.2594299

Faruki, P., Bharmal, A., Laxmi, V., Ganmoor, V., Gaur, M. S., Conti, M., & Rajarajan, M. (2015). Android

Security: A Survey of Issues, Malware Penetration, and Defenses. IEEE Communications

Surveys Tutorials, 17(2), 998–1022. https://doi.org/10.1109/COMST.2014.2386139

Bhandari, S., Jaballah, W. B., Jain, V., Laxmi, V., Zemmari, A., Gaur, M. S., Mosbah, M., & Conti, M.

(2017). Android inter-app communication threats and detection techniques. Computers

& Security, 70, 392–421. https://doi.org/10.1016/j.cose.2017.07.002

Zhou, Y., & Jiang, X. (2012). Dissecting Android Malware: Characterization and Evolution. 2012 IEEE

Symposium on Security and Privacy. https://doi.org/10.1109/sp.2012.16

Detection of Intrusions and Malware, and Vulnerability Assessment. (2017). In M. Polychronakis & M.

Meier (Eds.), Lecture Notes in Computer Science. Springer International Publishing.

https://doi.org/10.1007/978-3-319-60876-1

Salehi, M., Amini, M., & Crispo, B. (2019). Detecting malicious applications using system services

request behavior. Proceedings of the 16th EAI International Conference on Mobile and

Ubiquitous Systems: Computing, Networking and Services.

https://doi.org/10.1145/3360774.3360805

2024 by the authors; EuoAsian Academy of Global Learning and Education Ltd. Pakistan. This is an open

access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1080/08839514.2021.2007327
https://doi.org/10.1109/sp.2012.16
https://doi.org/10.1016/j.cosrev.2021.100365
https://doi.org/10.1007/s00165-017-0445-z
https://arxiv.org/abs/1611.10231
https://doi.org/10.1145/2808117.2808118
https://doi.org/10.1145/2666356.2594299
https://doi.org/10.1109/COMST.2014.2386139
https://doi.org/10.1016/j.cose.2017.07.002
https://doi.org/10.1109/sp.2012.16
https://doi.org/10.1007/978-3-319-60876-1
https://doi.org/10.1145/3360774.3360805
http://creativecommons.org/licenses/by/4.0/

