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This research explores utilizing data mining of electronic health 

records to accurately predict hospital patient mortality. A dataset 

containing over 100,000 episodes of hospitalizations with extensive 

clinical variables was used to develop machine-learning models for 

survival classification. The significant class imbalance between 

survivor and non-survivor outcomes was handled in preprocessing 

via down sampling to prevent prediction bias. Feature engineering 

selected 15 key predictors from the hundreds available, including 

factors such as age and blood. pressures and disability scores. The 

extreme gradient boosting XGBoost classifier achieved the highest 

test accuracy of 84.75 percent. However, limitations around model 

interpretability through explainable AI techniques and rigorous 

temporal validation across recent periods persist. Enhancing 

reproducibility, transparency, and precision remains imperative 

before any clinical integration. The technical feasibility of distilling 

useful mortality risk insights from high-dimensional, heterogeneous 

patient data is demonstrated but significant challenges hamper 

real-world viability currently. This research highlights the overarching 

complexity but also the importance of data mining for unlocking 

reliable, trustworthy predictive insights to save lives in healthcare 
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INTRODUCTION 

The Predicting patient survival is crucial in the fast-changing healthcare setting. Data 

mining and predictive analytics can improve patient outcomes by harnessing the 

massive amount of medical data created daily. Healthcare is becoming data-rich 

with the rise of EHRs, wearables, and medical imaging. Healthcare workers and 

researchers face possibilities and difficulties from this data boom. Data mining in 

clinical medicine could revolutionize patient care by improving survival prediction. 

Data is becoming more important in healthcare, which was traditionally driven by 

clinical experience and medical skills. Improved patient care, diagnosis, and 

treatment are possible using data mining and predictive analytics. Healthcare 

organizations and researchers can use patient data to gain insights and make 

educated decisions in this data-driven paradigm. The complexity of healthcare data 

emphasizes its importance. Laboratory findings, patient details, clinical notes, and 



 

 

 

The Asian Bulletin of Big Data Management                                      Data Sciences 4(4),369-406 
 
medical pictures are included. This variety of data sets helps explain diseases, 

treatment outcomes, and patient trajectories.Patient survival prediction is a key data 

mining application in healthcare. It uses past patient data to forecast a patient’s 

survival over a given period. Several ways may accurate survival prediction help 

healthcare professionals: 

• Treatment Planning: It helps clinicians tailor treatment plans by identifying 

high-risk patients who may benefit from more intensive interventions. 

• Resource Allocation: Hospitals and healthcare institutions can allocate 

resources more efficiently by anticipating patient needs. 

• Research Advancements: Survival prediction models support medical 

research by identifying factors that influence patient outcomes and informing 

the development of novel therapies. 

Predictive analytics is crucial to precision medicine, which tailors treatment to an 

individual’s genetic, clinical, and lifestyle features. As healthcare gets more 

personalized, reliable patient survival prediction is vital. 

• Improving Accuracy:   Current survival prediction algorithms generally lack the 

necessary accuracy for clinical decision-making. More accurate and 

trustworthy models are needed to enhance patient outcomes. 

• Healthcare Data Complexity: Healthcare data is complex, heterogeneous, 

and high-dimensional. Extracting significant patterns from such data requires 

advanced data mining. 

• Real-time estimates: Critical care scenarios require real-time survival 

estimates. Innovative methods are needed for timely predictions. 

• Interpretability: The” black box” aspect of some machine learning algorithms 

can hinder clinical use. Interpretable models that reveal predictive factors are 

in demand. 

This research paper addresses these problems and advances patient survival 

prediction using data mining. The state of the art, existing techniques, and areas for 

innovation will be examined. We will also examine promising healthcare data mining 

directions and technology. 

The following are the objectives of this research paper. 

• Providing an overview of important research on data mining (e.g., Bellazzi and 

Zupan, 2008; Delen et al., 2005). 

• Analyze the contributions of these studies in advancing patient survival 

prediction. 

• Identify gaps in the existing literature and opportunities for further research. 

• Discuss healthcare data developments, such as the importance of AI in 

medical imaging (Panayides et al., 2020). 

• Provide principles for improving ethical data mining in healthcare. 

• Consider integrating predictive models into clinical decision support systems. 
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LITERATURE REVIEW 

Enhancing Healthcare data capture, storage, and analysis will advance dramatically. 

The convergence of AI and ML has proven particularly disruptive. AI is increasingly 

utilized to analyze medical imagery, evaluate diagnostic data, and forecast patient 

outcomes (Panayides et al., 2020). Intelligent medical imaging tools like convolutional 

neural networks (CNNs) have improved illness diagnosis and therapy options. These 

technological advances suggest data mining can use these rich data sources to 

enhance patient survival prediction.Wearable gadgets and the IoT expand 

healthcare data. Real-time patient data streams are generated by monitoring vital 

signs, activity, and physiological characteristics. Data mining these sources can 

provide dynamic patient health insights for timely interventions and personalized 

treatment. 

AI and Machine Learning Advances 

AI and machine learning have transformed healthcare. Recent advances in NLP and 

deep learning allow healthcare providers to extract useful information from 

unstructured clinical notes and texts (Panayides et al., 2020). ML models, including 

deep learning architectures, excel at picture categorization and patient risk 

stratification. In the domain of optimizing resource utilization, advanced database 

architectures, particularly MySQL storage engines, have demonstrated significant 

potential for improving the efficiency of data processing and resource management 

in large-scale systems, making them a crucial foundation for handling large datasets 

in patient survival prediction models. Scalable data lakes have emerged as a pivotal 

technology for managing the vast and diverse datasets generated by the Internet of 

Things (IoT), offering an effective way to organize, store, and process data that can 

be utilized in predictive modeling for healthcare and patient outcomes. Addressing 

global challenges such as energy crises, frameworks for managing energy systems 

have been essential for devising predictive models and ensuring resource 

optimization, which can be adapted to enhance the accuracy of survival prediction 

models in healthcare through intelligent resource allocation and forecasting. 

Furthermore, the integration of AI technologies for detecting and mitigating 

cybersecurity threats has broad implications for the secure handling of sensitive 

healthcare data, reinforcing the need for robust protection mechanisms in the 

development of predictive models for patient survival. Additionally, the adoption of 

fuzzy-based weighted federated learning approaches has shown promise in 

optimizing sustainable energy management, an approach that can be repurposed 

to improve data privacy and model accuracy in patient survival prediction through 

decentralized data integration and intelligent decision-making. 

AI and ML’s contribution to predictive models has proven its ability to disrupt several 

domains, healthcare being one of them. The AI and remote sensing aided 

identification of hidden1 water quality patterns is an3 example of how sophisticated 

data analysis can lead to useful action and is connected to patient data analytics (Al 

Noman et al. 2024). AI-enhanced business intelligence has proven to be effective in 

data based governance providing concepts that can be adapted for policy 

formulation in health care strategic management (Rimon et al 2024).  

The fact that machine learning is being employed in healthcare for the purpose of 

business strategy illustrates its potential for use in healthcare predictive analytics to 

improve clinical outcome for patients (Sufian et al., 2024). The combination of 

embedded AI and quantum computing demonstrates the ability to analyze big data 
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which is important for predicting the outcome in sophisticated healthcare 

environments (Mosaddeque et al, 2024). AI application in short term load forecasting 

has underlined the significance of predictive analytics which extends to predicting 

people’s survival for purposes of advancing patient care (Ahamed et al, 2024).  

Predictive analytics in healthcare has witnessed immense growth occasioned by 

transformative AI which makes it possible to create data driven and real-time solutions 

to be used in decision making for higher chances of patient survival (Tarafder et al 

2024). AI powered approaches for optimization exemplified by smart grids have 

demonstrated the significant and increasing role of intelligent systems in improving 

efficiency and this can be mirrored in healthcare systems to enhance predictive 

capabilities (Ahamed et al, 2024). 

AI and ML models can incorporate genomes, proteomics, and clinical data into 

patient survival prediction models. These models can predict survival and reveal 

disease progression’s molecular underpinnings. Thus, AI and ML in healthcare data 

mining will improve patient outcomes and enable personalized medication. 

Ethical Considerations and Explain Ability 

As data mining techniques become more ingrained in healthcare decision-making, 

ethical considerations become increasingly critical. Patient data privacy, consent, 

and security are paramount concerns. Ensuring that data is used responsibly and in 

compliance with privacy regulations is essential to maintaining trust in healthcare 

data mining (Kumar et al., 2023). Ethical guidelines and best practices should be 

rigorously followed to protect patient information and uphold the principles of 

beneficence and non-maleficence. 

Another ethical challenge arises from the” black box” nature of some complex 

machine learning models. While these models may provide highly accurate 

predictions, their lack of transparency can be a barrier to acceptance in clinical 

practice. Ensuring the explainability of predictive models, that is, their ability to 

elucidate the factors influencing predictions, is essential (Kumar et al., 2023). 

Researchers are actively working on methods to make AI and ML models more 

interpretable, allowing healthcare professionals to trust and act upon their 

recommendations. 

Integration with Clinical Decision Support Systems 

To realize the full potential of predictive models, integration into clinical decision 

support systems (CDSS) is imperative (Panayides et al., 2020). CDSS combines clinical 

knowledge with patient-specific data to assist healthcare providers in making 

evidence-based decisions. Integrating patient survival prediction models into CDSS 

can empower clinicians with real-time risk assessments and treatment 

recommendations. By seamlessly integrating predictive analytics into the clinical 

workflow, health- care professionals can proactively identify high-risk patients, 

allocate resources efficiently, and tailor treatments to individual needs. This 

convergence of data mining and clinical practice holds the promise of significantly 

improving patient outcomes and reducing the burden on healthcare systems. 

Data mining can improve patient survival prediction and clinical decision-making in 

healthcare. This thorough literature review covers leading works and current 

developments in data mining for healthcare, including predictive data mining in 

clinical medicine, AI in medical imaging informatics, and cancer data analysis. 
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Clinical Medicine Predictive Data Mining 

Bellazzi and Zupan (2008) addressed clinical medicine predictive data mining 

challenges and provided implementation strategies. They stressed the necessity of 

feature selection, model validation, and interpretability in clinical settings when using 

patient data for predictive modeling. Clinical datasets require comprehensive data 

preprocessing to accommodate noisy and missing medical data, the scientists noted. 

Bellazzi and Zupan’s (2008) guidelines shaped this field’s study. 

Medical Imaging Informatics AI 

Panayides et al. (2020) found that AI in medical imaging informatics transforms 

healthcare. The authors discussed AI’s potential to improve diagnostic accuracy and 

radiological workflows in medical imaging and its difficulties and future directions. 

Radiological disease identification and characterization are advanced with the use 

of AI-driven medical imaging tools like convolutional neural networks (CNNs). This 

study showed how deep learning transformed medical imaging informatics. 

Analysis of Cancer Data 

Delen et al (2005) compared three breast cancer survivorship data mining strategies. 

Data mining was used in cancer to show how predictive models could prove clinical 

decision-making. Delen (2009) added data mining to cancer data analysis to improve 

diagnosis, prognosis, and treatment. Cancer research using genomic and clinical 

data showed healthcare data mining’s complexity. 

Stay-Based Patient Flow Model Length 

Marshall et al (2005) examined the length of stay-based patient flow models, offering 

light on healthcare management science’s current and future directions. Their 

research stressed hospital resources, patient flow, and bed utilization optimization. 

Data-driven models improved healthcare operations, wait times, and patient care. 

This study showed how data mining and healthcare management can improve 

healthcare delivery.  Text mining cancer-related information Spasi´c et al. (2014) 

reviewed text mining of cancer-related information, highlighting present and 

prospects for extracting knowledge from textual data. Their work showed how NLP 

may extract insights from unstructured clinical texts and literature. Text mining helped 

researchers and physicians stay current on oncology by combining and analyzing a 

massive volume of cancer-related data. 

Charged particle therapy 

Loeffler and Durante (2013) examined charged particle treatment optimization issues 

and future directions. Their research stressed the importance of data-driven therapy 

planning, dose optimization, and patient-specific tactics. Data mining was crucial to 

understanding charged particle therapy’s biological reaction and personalized 

cancer treatment. This study showed that healthcare data mining combined physics 

and medicine to improve patient care. 

Trends in Cognitive Computing 

This systematic literature study by Srivani et al (2023) examined cognitive computing 

technology and healthcare research directions. They showed how cognitive 

computing is changing, including natural language understanding, pattern 

recognition, and decision assistance. Cognitive computing’s ability to analyze 

complex medical data and aid clinical decision-making could transform health- care. 
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This review illuminated healthcare AI-driven cognitive computing integration. 

AI in Healthcare: Current 

Wang and Preininger (2019) covered healthcare AI’s current state. The authors 

discussed healthcare AI adoption problems and future directions, emphasizing 

interoperability, data protection, and regulatory compliance. AI’s disease diagnosis, 

therapy prescription, and patient monitoring showed clinical improvement potential. 

This review illuminated the complicated world of AI in healthcare and its effects on 

data mining. 

Enhancing Heart Failure Survival Prediction 

Ishaq et al. (2021) employed SMOTE and data mining to improve heart failure survival 

prediction. Survival prediction tasks often require resolving class imbalance in 

healthcare datasets, which their research showed. Data mining methods like 

oversampling (SMOTE) improved survival estimates, improving predictive models’ 

clinical value. 

AI for Thyroid Cancer Diagnosis 

Habchi et al. (2023) examined thyroid cancer diagnosis using AI, including methods, 

trends, and future directions.  This study stressed the importance of AI in diagnostic 

accuracy and early cancer diagnosis. AI applications in healthcare are 

interdisciplinary, as shown by thyroid cancer diagnostics using machine learning 

algorithms. 

AI in Healthcare 

Kumar et al (2023) reviewed healthcare AI, including obstacles, ethics, trust, and 

future research. This study examined the ethical implications of AI deployment in 

healthcare, emphasizing openness, fairness, and responsibility. This review focused on 

healthcare data mining ethics. 

Fighting COVID-19 with AI 

Nguyen et al. (2020) surveyed AI’s function in COVID-19 prevention. Their research 

showed how data mining and AI helped fight the pandemic. Epidemiological 

modeling, medication research, and vaccine development were used. Data mining 

can adapt to new healthcare concerns, as shown in this study. 

History, Present, and Future of AI 

Kubassova et al (2021) covered the history, present, and future of healthcare AI. AI 

applications in healthcare and advances in medical imaging, diagnostics, and 

personalized treatment were described by the authors. AI’s ability to transform 

healthcare and enhance patient outcomes was a major focus. 

Advanced non-small cell lung cancer targeted therapy  

Majeed et al (2021) examined advanced non-small cell lung cancer targeted 

therapy. This study showed how data mining and genetic profiling enable 

personalized treatment. Integrating genetic data and clinical insights showed that 

data-driven oncology treatments can improve efficacy. 

Techniques and Concepts of Data Mining 
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Han et al (2011) laid the groundwork for data mining. Their study provided a complete 

guide to data mining basics. Data preprocessing, classification, clustering, association 

rule mining, and outlier identification were covered. While not healthcare-specific, this 

core understanding prepared data mining tools for clinical and medical use. 

Finding Knowledge in Data 

Larose and Larose (2014) established data mining by introducing data discovery. The 

writers stressed data exploration, hypothesis testing, and predictive modeling. This 

data mining foundation advanced knowledge discovery. 

Statistical Learning Elements 

Hastie et al (2009) provided” The Elements of Statistical Learning,” a thorough 

statistical and machine learning overview.  Although not healthcare-specific, this work 

lays the theoretical groundwork for several healthcare data mining techniques. 

Regression, classification, resampling, and tree-based models were covered. 

Hospitalization Prediction with Data Mining 

Yeh, Wu, and Tsao (2011) used data mining to predict hemodialysis hospitalization. 

This study showed healthcare predictive modeling potential. Data mining tools like 

decision trees and SVMs predict hospitalization risks. This study showed that data 

mining improves patient care and resource allocation. 

Bibliometric Analysis of Sustainable Healthcare Technology 

A bibliometric analysis of sustainable healthcare technology was done by Nti et al 

(2023). Their research focused on healthcare technology trends and future directions. 

Though not data mining-specific, this study shed light on the technical context in 

which data mining is crucial. To maximize resource use and patient outcomes, 

sustainable healthcare uses data. 

Algorithms and Applications of Machine Learning 

Sarker (2021) examined machine learning techniques, applications, and research 

directions. This study covered machine learning methods and their non-healthcare 

applications. Machine learning, particularly data mining, is used across disciplines, 

and this review showed its multidisciplinary importance. 

Hospital Readmission Prediction Models 

A systematic review by Artetxe et al (2018) examined hospital readmission risk 

prediction methods. The focus was on healthcare management, although data 

mining was used for clinical decision support. Targeted interventions were made 

possible by predictive modeling of hospital readmission risk. 

Predicting Hospital Readmissions 

Wang and Zhu (2021) discussed hospital readmission prediction issues and solutions. 

This study showed that data-driven techniques reduce hospital readmissions. Logistic 

regression and ensemble methods were used to construct models to help healthcare 

practitioners identify high-risk readmission patients. 

ICU Readmission Prediction 

Using aggregated physiological and pharmacological trends, Xue et al (2019) 

predicted ICU readmission. This study showed how data mining can be used in critical 
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care. Predictive methods identified ICU readmission risk by analyzing physiological 

data and drug usage. 

Hospital Readmission Prediction Analytics 

Al-Sayouri (2014) used integrated data mining to forecast hospital readmissions. The 

study showed data mining’s potential in healthcare management systems. This study 

used past patient data to help hospital administrators reduce costly readmissions. 

Readmission Prediction for Heart Failure Patients 

Sohrabi et al (2019) used data analytics to predict heart failure readmission. This study 

addressed a major healthcare issue with data mining and predictive modeling. The 

study developed algorithms to help doctors prevent heart failure readmissions by 

proactively managing patients’ care. 

Campylobacteriosis Hospital Readmission Prediction 

Electronic health records can predict campylobacteriosis hospital readmission, 

according to Zhou et al (2022). This study demonstrated infectious illness surveillance 

and prediction using machine learning and text mining. Campylobacteriosis hospital 

readmission risks were predicted using electronic health data. 

Predictive Data Mining in Clinical Medicine: Selected Methods and Applications 

Bellazzi et al (2011) examined clinical medicine's predictive data mining methods- 

ologies and applications.  This study expanded on their 2008 paper by focusing on 

data mining methodologies and clinical applications. The authors examined 

predictive data mining’s healthcare issues and prospects. 

Medical Diagnostic Decision Support Modelling 

Wagholikar et al (2012) reviewed medical diagnostic decision support modeling 

paradigms. In addition to data mining, this study examined healthcare decision-

support methods. The study showed how data-driven models aid medical diagnosis 

and decision-making. 

Future Consumer Health Informatics Trends 

Lai et al (2017) explored consumer health informatics and patient-generated health 

data trends. This study examined patient-generated data and healthcare data 

mining. Data-driven healthcare interventions were possible using wearable devices 

and self-reported health data. 

Case-Based Reasoning in Health Sciences 

Bichindaritz and Marling (2010) studied health science case-based reasoning, 

establishing the groundwork for knowledge-driven decision support. This study showed 

how case-based reasoning supports clinical decision assistance, not just data mining. 

Case-based reasoning systems inform data-driven healthcare with historical insights 

and recommendations. 

Heart–Lung Transplant Graft Survival Prediction 

Oztekin et al (2009) attempted to predict heart–lung transplant graft survival. This study 

applied data mining to organ transplantation.  Predictive models were created from 

patient and donor data to help transplant decision-making. 
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Machine Learning Basics for Predictive Data Analytics 

For predictive data analytics, Kelleher, Namee, and D’Arcy (2015) presented key 

insights into machine learning. This fundamental paper explains machine learning 

techniques and predictive modeling. While not healthcare-specific, this expertise 

helped apply machine learning to healthcare datasets. Intro to Machine Learning 

Alpaydin (2020) provides a wide introduction to machine learning principles and 

methods. This underlying knowledge was essential for understanding machine 

learning, which underpins many healthcare data mining methods. Data Mining Intro 

Tan, Steinbach, and Kumar (2016) introduced data mining basics. While not 

healthcare-related, this work helped explain data mining, including data 

pretreatment, model creation, and evaluation. These principles apply to healthcare 

data mining. 

The Probability of Machine Learning 

Murphy (2012) saw machine learning probabilistically. The probabilistic basis of 

machine learning algorithms is crucial for comprehending clinical data and 

prediction uncertainty. Probabilistic models are used in healthcare risk prediction and 

diagnostic modeling. 

Machine Learning with R 

R-based machine learning was explained by Lantz (2013). This book described 

classification, regression, clustering, and dimensionality reduction applications in 

machine learning. Healthcare analytics academics and practitioners could utilize R 

to construct data mining methods. 

AI: A Modern Approach 

Russell and Norvig (2016) presented” Artificial Intelligence: A Modern Approach,” a 

thorough overview of AI principles and approaches. While not healthcare-specific, 

this book taught AI basics including machine learning, knowledge representation, 

and reasoning. These AI principles underpin many health- care data mining 

applications. 

The Textbook of Data Mining 

Aggarwal (2015) wrote” Data Mining: The Textbook,” a comprehensive data mining 

guide. This extensive resource includes clustering, classification, association analysis, 

and anomaly detection. Healthcare data analysts and researchers used this 

textbook’s wide range of data mining approaches. 

Regression and Classification by Random Forest 

Liaw and Wiener (2002) researched the Random Forest algorithm, a popular 

classification and regression ensemble learning tool. In healthcare, Random Forest is 

used to forecast disease and measure risk. This paper helped explain Random Forest, 

a common healthcare data mining machine-learning technique. This literature 

review covered many data mining and healthcare application themes. The research 

demonstrates the importance of data mining in health- care, from predictive data 

mining in clinical medicine to AI in medical imaging informatics, from cancer data 

analysis to hospital readmission prediction. Data mining and machine learning have 

laid the groundwork for healthcare data mining, enabling researchers and 

practitioners to use data-driven decision-making to improve patient outcomes and 

healthcare management. Staying abreast of new trends, ethical issues, and the 
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integration of data mining and AI in healthcare is crucial. 

RESEARCH METHODOLOGY 

Data Extraction 

In this section, we explain data extraction, covering the dataset’s genesis, source, 

and selection criteria. 

Dataset Description 

The research dataset comes from multiple sources. It includes clinical, 

demographic, and survival data from patient records. The dataset comprises 

patients’ medical history, treatment regimens, vital signs, test results, and survival 

outcomes. 

Data Selection Criteria 

A precise set of criteria was used to select the data to ensure relevance to the 

research aims. Criteria include: 

• Patients with complete survival outcome data. 

• Availability of vital clinical indicators for predicting survival. 

• A representative sample size for useful analysis 
Data Preprocessing 

Data preprocessing is a crucial step to ensure the dataset’s quality and suitability 

for predictive modeling. This section elaborates on the steps taken to clean and 

prepare the data. 

Handling Missing Values 

Missing data can significantly impact the accuracy of predictive models. We 

applied various strategies to address missing values: 

• Imputation: For numerical features, missing values were imputed using mean, 

median, or mode values. 

• Categorical Encoding: For categorical features, missing values were 

encoded as a separate category. 

• Deletion: In cases where missing data was extensive and non-informative, 

corresponding records were removed. 

 

Removing Unnecessary Columns 

Not all features in the dataset contribute equally to predictive performance. 

Unnecessary columns were identified and removed to reduce dimensionality and 

computational complexity. 

Handling Duplicates 

Duplicate records, if any, were identified and removed to ensure data consistency. 

Research Method 

The research methodology outlines the data mining techniques employed in 

the analysis. In the context of patient survival prediction, a range of machine 

learning models were considered for implementation: 

Machine Learning Models 
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1 Decision Trees: Decision tree models were employed to create 

interpretable rules for survival prediction. 

2 Random Forest: Random Forests were used to mitigate overfitting 

and enhance prediction accuracy by aggregating multiple 

decision trees. 

3 XGBoost: Extreme Gradient Boosting (XGBoost) was employed to 

handle class imbalance and improve prediction performance. 

4 Naive Bayes: A Naive Bayes classifier was used for probabilistic 

prediction based on feature independence assumptions. 

5 Logistic Regression: Logistic regression models were applied to 

model the probability of patient survival. 

A Statistical Analysis 

The dataset’s properties and variable relationships were examined using statistical 

analysis. Descriptive statistics, correlation analysis, and hypothesis testing were 

used. 

Design Model 

Survival prediction accuracy and interpretability depend on machine learning 

model selection and construction. Why each model was chosen and how it was 

implemented in the code: 

• Decision trees were selected for their simplicity and interpretability in rule 

generation. They had a depth limit to prevent overfitting. 

• Random Forests were chosen to handle complex data relationships. Ensemble 

methods minimize variation and enhance prediction. 

• XGBoost was selected for its exceptional performance in optimizing gradient 

boosting and handling unbalanced datasets. 

• Naive Bayes: A probabilistic classifier was used to evaluate simple survival 

prediction models. 

Logistic regression models were used to establish a baseline for survival prediction. 

Data partitioning, model training, hyperparameter tuning, and model evaluation 

utilizing accuracy, precision, recall, and F1-score were required to develop these 

models. 

 

Dataset Summary 

The dataset includes demographics, medical history, clinical measures, and 

more. Each feature provides a unique view of the patient’s health and outcomes. 

Demographic Data 

• Age: Age matters in healthcare. Healthcare demands and dangers vary for 

older individuals. The dataset’s age distribution affects model predictions and 

interpretations. 

• Gender: Gender-specific trends in disease prevalence and outcomes are well-

documented in medical research. For instance, certain cardiovascular 

diseases may present differently in men and women. 

• Ethnicity: This can be a proxy for a range of genetic, environmental, and social 

factors that impact health 

Medical History 

• Elective Surgery: Indicates planned surgeries, which often implies a different 
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risk profile compared to emergency surgeries. 

• Medical Conditions: The presence of conditions like diabetes, hepatic failure, 

or immunosuppression is crucial. These comorbidities can complicate patient 

care and significantly impact survival predictions. 

Clinical Measurements 

• BMI: A key health indicator. Overweight and underweight patients may face 

different health risks. 

• Height and Weight: Basic yet vital metrics. They’re essential not just for BMI 

calculation but also for understanding patient physiology. 

• Hospital and ICU Details:  These contextual features provide insights into the 

level of care the patient is receiving. 

Apache Scores 

• Apache II, Apache III, Apache   IV:  These are scores calculated based 

on several measurements taken during the first 24 hours after admission to an 

ICU. They are designed to measure the severity of disease for adult patients 

admitted to intensive care units. 

Challenges in the Dataset 

Missing Data 

Handling missing data is a significant challenge. Imputation strategies should be 

carefully chosen based on the nature of the missing data. For instance, missing 

values in ’BMI’ might be imputed differently than those in ’ethnicity’. 

Data Imbalance 

If the dataset is imbalanced concerning the target variable (hospital deaths), this 

could lead to biased models. Techniques like SMOTE (Synthetic Minority Over-

sampling Technique) or adjusting class weights in the model can be used to 

address this. 

Data Quality and Reliability 

Ensuring that the data accurately represents the patient’s condition is paramount. 

Inaccurate data can lead to incorrect predictions and potentially harmful 

recommendations. 

Feature Correlation 

Understanding the inter-relationships between different features is important. For 

example, there might be a correlation between age and certain medical 

conditions. 

 

IMPLICATIONS FOR PREDICTIVE MODELING 

Feature Engineering 

Creating new features from the existing data can provide additional insights. For 

instance, a feature representing the number of comorbidities might be more 

predictive than considering each condition separately. 
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Model Selection 

Given the nature of the data, certain models might be more appropriate. For 

example, ensemble methods like Random Forests or Gradient Boosting Machines 

might handle the diverse range of features better than simpler models. 

Model Interpretability 

In healthcare, understanding why a model makes a certain prediction is as 

important as the prediction’s accuracy. Techniques like SHAP (Shapley Additive 

explanations) can be used to interpret complex models. 

The dataset presents a rich tapestry of information that can be harnessed to 

predict patient survival in hospitals. The challenge lies in not just developing a 

model that predicts well but also in understanding the nuances of the data and 

the predictions. As healthcare moves towards more personalized care, the ability 

to accurately predict patient outcomes using such data will be invaluable. This 

project, by leveraging these data mining techniques, can potentially contribute 

significantly to this field. The insights gained from the dataset can inform 

healthcare providers and policymakers, leading to better patient care and 

improved healthcare systems. 

RESULTS 

The predictive modeling experiments yielded important insights and varying 

performance across the tested machine learning algorithms when applied to the 

electronic health records dataset for hospital mortality prediction. 

Data Overview 

The original dataset contained over 100,000 patient hospitalization episodes, 

including both survivors and non-survivors. A wide range of features were 

available spanning demographics, vital sign measurements, lab test results, and 

treatments. This high-dimensional dataset with a mix of categorical and 

continuous variables collected in real-world clinical settings posed modeling 

challenges but also offered signals to distinguish mortality risk. 

Initial exploration revealed that non-survivor class instances comprised just 11 

percent of all cases, highlighting a substantial class imbalance that could bias 

predictions if not addressed in preprocessing. Some anomalies in statistical 

distributions were noted for features like age and diastolic blood pressure as well. 

But broad patterns aligned with expectations given documented epidemiology 

trends. For example, the higher mortality among elderly patients above age 70 

was evidenced. 
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Figure 1. 

Gender Distribution 

 

Class Rebalancing 

To prevent distorted modeling on imbalanced training data, downsampling was 
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applied to reduce the majority survivor class by randomly removing instances. This 

produced a 50/50 class balance between survivors and non-survivors, - ensuring 

models would not simply favor the more prevalent class. However, down-

sampling also reduces the amount of data for training models. More advanced 

techniques like SMOTE oversampling could help retain more examples. 

Feature Selection 

Extra trees feature important processing stages that helped identify and select 

sub-groups of the most predictive features from the hundreds of available 

variables. The 15 top features chosen including clinical factors like age, blood 

pressure, and verbal disability scores demonstrated the wealth of mortality risk 

signals contained across patient measurements. Focusing modeling on this 

relevant subset improved computational performance and lowered risks of 

overfitting to spurious patterns. 

Prediction Performance 

Held-out test set performance for the best-performing XGBoost model reached. 

84.75 percent accuracy at discriminating mortality outcomes in unseen data. 

While satisfactory for an initial proof-of-concept, more rigorous validation is 

needed through temporal split testing and updated retraining before considering 

operational deployment. Maximizing other metrics like sensitivity for the minority 

positive class could be prioritized over raw accuracy alone depending on the 

clinical use case. 

Algorithm Comparison 

The integrated gradient boosting XGBoost classifier outperformed simpler models 

like naive Bayes and single decision trees, confirming expectations about 

enhanced capabilities from ensemble techniques for tackling clinical prediction 

tasks with many interacting variables.   However, the gradient-boosted decision 

tree model comes at a cost of reduced interpretability compared to more 

transparent methods.  Surprisingly, XGBoost barely exceeded the 84.25 percent 

accuracy from a linear support vector machine model. This suggests there may 

be limitations in the dataset size or number of nonlinear relationships for XGBoost 

to fully showcase strengths. 

Model Insights 

While predictions proved reasonably accurate, the fitted models themselves 

provided very little clinical insight. Feature importance scores deliver some 

guidance on prominent risk factors but do not quantify contributions or 

interactions. And individual tree structure in XGBoost defies detailed analysis. 

Moving forward, alternate techniques more amenable to inference like regression 

modeling warrant consideration instead of solely chasing metrics. Integrating 

clinical logic and constraints into modeling is imperative. 

Generalizability 

Strong evidence about the transportability of the developed XGBoost model 

across periods or healthcare settings remains lacking despite acceptable scores 

on an isolated test portion. Before suggesting any generalizable clinical viability, 

rigorous validation through a temporal split testing predictive stability on recent 

data would be mandated. External geographical validation across hospitals 

countrywide would provide even greater confidence about robustness to 
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demographic and practice variations. However substantial datasets with 

common data formats rarely exist to fulfill this goal. 

In summary, while reasonable accuracy was achieved by an ensemble XGBoost 

classifier, inadequate model explainability and questions around predictive re-

liability under changing real-world conditions reveal much room for advancing 

methodology to move laboratory experiments toward clinical adoption. 

Maximalizing precision alone cannot justify an application for guiding high-risk 

decisions without extensively characterized performance in local deployment. 

Core technical achievements thus far include: 

• Demonstrating the feasibility of mortality prediction from EHR data 

• Highlighting class imbalance effects requiring preprocessing 

• Showcasing the utility of feature engineering for generalization 

• Developing baseline gradient boosting model with 84.75 percent accuracy. 

• Establishing a comparative benchmark for more advanced approaches 

• Elucidating need for interpretability and robust temporal validation 

But truly delivering reliable, trustworthy predictive insights that save lives. 

mains a distant target requiring extensive continued research addressing these 

pressing challenges through interdisciplinary innovation. With patient outcomes at 

stake, solving fundamental adoption barriers around reproducibility, 

transparency, and precision merits the highest priority in follow-on work if survival 

prediction is to fulfill its intended life-saving aspirations. 

 

CODE WORKING 
Introduction and Data Loading 

An interesting healthcare analytics effort, the” Patient Survival Prediction” 

initiative uses data to forecast patient outcomes. The goal is to analyze a big 

dataset and develop models that reliably predict patient survival to improve 

healthcare delivery and patient care. This project’s Python-loaded patient 

dataset includes everything from age and gender to lab findings and pre-existing 

conditions. This dataset, perhaps from a healthcare provider or medical study, 

delves into patient survival factors. Knowing these outcomes can help doctors 

make better judgments, personalize therapies, and enhance patients’ quality of 

life and survival. This initiative is a milestone in using data to improve medical 

predictions and treatments. 

Libraries, Tools 

Some important data analysis and machine learning libraries are imported 

into the” Patient Survival Prediction” Python code. 

Python’s NumPy library is essential for scientific computing.  In projects, NumPy is 

crucial for numerical operations. It supports multi-dimensional arrays and matrices 

and a huge set of mathematical functions to operate on them.  NumPy is essential 

for numerical data processing and transformation, which are crucial to medical 

data analysis. 

Pandas are a powerful data manipulation and analysis package with structures 

and operations for numerical tables and time series. Pandas are used to read, 

clean, and prepare the dataset for analysis in this code. Tabular data exploitation, 

cleaning, and processing are easy using its Data Frame object. Pandas’ capacity 

to integrate, filter, and handle missing data makes it essential for data-driven 

projects, especially patient survival research. 
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Warnings:  Python warnings are managed by the warning library.  Data analysis 

and machine learning projects sometimes generate deprecated features or 

practice alerts. Controlling warning visibility is useful when sharing or presenting 

analysis with the warning library. Suppressing non-critical warnings keeps output 

clean and focuses on the most crucial analysis. 

These libraries are the project’s backbone, each providing specific capabilities 

to help with data loading, cleaning, analysis, and modeling.  Their integration 

shows how advanced data analysis activities like patient survival prediction 

require synergy. 

EXPLORING AND PREPROCESSING DATA 

Inspection of Initial Data 

Initial data inspection is necessary before exploring the patient survival dataset. 

Pandas’ df. head () and df. shape functions are crucial. The df. head () function 

shows the first few rows of the Data Frame, providing a preview. This view is 

crucial because it shows the variables included (demographic data, medical 

history, and laboratory results), their data types (numeric, categorical), and a 

preliminary look at their values, including any obvious missing or anomalous data. 

However, the pdf.  shape function shows the dataset’s dimensionality—rows and 

columns. Understanding dataset size is important for several reasons. First, it tells 

the analyst of the data volume accessible for analysis, which helps choose data 

processing and machine learning methods. A larger dataset may enable more 

complex modeling but needs more computational resources. Second, the 

number of columns (features) shows the diversity of data available for analysis, 

which may reveal patient survival factors. 

This preliminary assessment is essential for data cleaning and analysis. It helps 

identify immediate areas of emphasis, such as columns with many missing values 

or unnecessary information and directs the preprocessing approach. 

Data Cleaning: Data cleaning is a crucial project phase with numerous 

essential procedures that affect model performance. The dataset initially has 

useful and irrelevant columns. Code removes encounter, patient, and hospital ID 

columns.  This stage is critical because irrelevant or redundant features might 

interfere with the model and cause overfitting when the model learns patterns 

from the training data that don’t apply to fresh data.Handling missing values is 

another important part of project data cleaning. Errors during data collection or 

survey non-responses can cause missing data. The type of data and extent of 

missing values should determine how to handle missing data. Columns having a lot 

of missing data may be deleted because they may bias the model. Statisticians 

could impute missing values in critical columns. 

Data cleansing greatly affects machine learning models. Cleaning and 

structuring data ensures that models are trained on relevant and correct data, 

improving predictions. However, models trained on unclean data may yield 

incorrect results, making data cleansing crucial to project success. 

Assessing Data Quality 

Data quality assessment is essential to project preprocessing, finding, and 

removing duplicate records. Data entry problems or dataset integration might 

cause duplicate records. Duplicates can influence analysis and lead to incorrect 

conclusions, thus they must be identified and removed. 
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Our method checks for duplicates by scanning the dataset for rows with identical 

values across all columns. After identifying duplicate entries, they are usually 

removed, leaving only one entry. This stage ensures that each data point in the 

study is unique, preventing duplicated information from affecting conclusions and 

modeling. 

Maintaining data quality goes beyond removing duplicates. High-quality data 

underpins any analytical project. Data quality involves ensuring it is accurate, 

consistent, and representative of the real-world environment it models. Quality 

data is especially important for patient survival prediction, where the stakes are 

high. Data quality affects prediction model reliability, which can affect patient 

care and treatment outcomes. Thus, a thorough data quality review strengthens 

the study and validates its conclusions. 

Analyzing Gender Distribution 

You calculate a count of males and females using valuecounts () on the ’gender’ 

column. This shows there are more males than females (54 percent vs 46 percent). 

A pie chart visualizes this gender split. Calling plt. pie () passes in the gender counts 

for slice sizes and adds custom labels and colors. The output pie chart clearly 

shows a higher proportion of males. 

 
Figure 2. 

Gender Distribution 

Analyzing Age Distribution 

Using seaborn sns. histplot (), you plot a histogram showing the distribution of 

patient ages, overlayed with a kernel density estimate. This visualization shows 

age distribution is somewhat bimodal, with peaks around 50 and 70 years. It 

indicates there may be differences between younger and older age groups 

needing investigation. 
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Figure 3. 

Age Distribution 

You use sns. boxplot () to plot BMI distribution. The boxplot shows BMI 

concentrated in the overweight range. Most values fall between 20-29. 

Comparing Gender Counts, A second custom pie chart directly compares the 

male and female counts, with color coding. This further highlights the 60-40 

gender split. 

 

 
Figure 4. 

Visualizing BMI 

 

A second custom pie chart directly compares the male and female counts, with 

color coding. This further highlights the 60-40 gender split. 
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Figure 5. 

Gender Counts  

You calculate counts per ethnicity category, store them in value counts, and then 

plot a custom color-coded bar chart showing the counts. This makes it clear 

Caucasians are the largest group, while other ethnicities like Hispanic and Asian 

have much lower representation. This imbalance needs consideration during 

analysis. 

 
Figure 6. 

Analyzing Ethnicity 

We specifically analyze the relationship between ethnicity and hospital deaths 

using a bar plot, with deaths on the y-axis. Variations are visible - but the count 

imbalances make trends hard to interpret. Further statistical analysis would be 

required. 

 
Figure 7. 

Hospital Deaths by Ethnicity 

Similar to age distribution, you plot a histogram overlaid with kernel density 

estimate to visualize the distribution of patient heights.The plot is unimodal, 
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centered around 170cm, indicating no clear subgroups based on height 

extremes. 

 
Figure 8. 

Analyzing Height 

 

The goal of the Distribution of APACHE 2 diagnosis codes is to analyze the 

frequency of different diagnosis codes in the dataset and gain clinically relevant 

insights. I first set up the figure by defining size for clarity as well as a custom 

color palette to make the plot more readable when printed or viewed in 

greyscale. 

We then call the seaborn counterplot () method, passing the apache2diagnosis 

feature/column as x input along with my defined custom color palette. This 

generates a bar plot with a height of bars representing counts for each unique 

diagnosis code value found in that feature column across all patient records. 

Codes are automatically taken from the data and used as x-tick labels. This plot 

thus provides an informative overview of the most prevalent medical conditions 

affecting the patient population. As you can observe, the most common code 

’85’ signifies a diagnosis of sepsis, followed by ’96’ respiratory failure and ’28’ 

gastrointestinal bleeding. However, over 20 unique diagnosis codes are present 

overall, with a wide variation in frequencies - some affect many thousands of 

patients, others only a couple hundred. Visualizing these diagnosis frequency 

distributions provides me with highly valuable clinical insights into the major 

morbidities experienced within this hospitalized patient cohort I am studying. To 

polish the plot for readability, I rotate stick labels by 90 degrees, so the long 

diagnosis code names do not end up overlapping. Finally, adding clean axis 

labels and an explanatory title completes the informative visualization, ready 

for analysis and interpretation. 

 
Figure 9. 

Distribution of Apache 2 Diagnoses 
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The Relationship between Hospital Death and APACHE 3J Diagnoses plot has 

a different aim - rather than just studying frequencies, I want to directly - 

analyze whether certain diagnosis codes influence or correlate with hospital 

mortality outcomes. This could reveal conditions associated with a higher risk 

of death to inform my predictive models. I again set up the figure to have high 

visual contrast by defining a simple two-color blue-orange palette, then 

structured my seaborn boxplot command such that hospital death status is 

placed on the x-axis and apache3jdiagnosis code on the y-axis. By organizing 

my plot this way, boxplots summarizing APACHE scores are produced 

separately and grouped by hospital mortality category for every diagnosis 

code value. This faceted layout results in clear visual separation between the 

score distributions of patients who ultimately survived versus died for certain 

codes such as ’52’ denoting congestive heart failure. Patients who died with 

a diagnosis of CHF demonstrate markedly higher APACHE assessment scores 

compared to those who survived this condition. This separation is what I was 

hoping to uncover since it indicates diagnosis code is an important feature that 

correlates with and likely directly impacts mortality risk. These relationships 

around the influence of conditions on outcomes are crucial to model and 

capture within my machine learning predictive pipeline to develop the best 

prognostic performance. 

 
Figure 10. 

Diagnoses Vs Hospital Death 

The Distribution of Heart Rate (apache) visualization has the straightforward 

aim of studying the distribution of observed heart rate values across all patients in 

the dataset. To begin, I extract just the heartrate apache feature column and call 

pandas. valuecounts () method to return a frequency distribution of all unique 

values present. This outputs a series with each distinct heart rate as the index and 

its counted frequency as the value. I pass this value counts output directly into 

Seaborn’s.  l ine plot  () using the indexes as x input and frequencies as y input. 

This builds the intuitive line chart with heart rates plotted on the x-axis and 

corresponding counts on the y-axis. Most heart rate observations fall in the 

physiologically normal 80-100 beats per minute range, but values span up to 

nearly 200. Labeling the axes and adding an explanatory title makes clear 

immediately that this plot represents the full distribution of observed heart rate 

values. Visualizing feature distributions in this manner provides helpful checks for 

anomalies or surprising patterns before conducting more complex statistical 

analyses. 
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Figure 11. 

Distribution of Heart Rate 
Pivoting focus, the Distribution of Heart Rate by Hospital Death visualization 

seeks to drill down specifically into whether heart rate values relate to mortality 

outcomes. I hypothesize that abnormal rates may correlate or even directly 

contribute to a higher risk of patient death. To test this, I take advantage of kernel 

density estimation plots (KDE) to visualize and compare feature value distributions 

between groups. I created two subsets of the full data frame - one containing 

only rows for patients who ultimately survived hospitalization, and the other with 

patients who died. I extract just the heartrate apache column from each subset, 

then plot overlapping KDE curves. This shows the full tribulation for each group, 

who survived in one color and died in the other. The KDE curve for those who 

died shows a right shift towards higher heart rates compared to the survival group. 

This clear separation supports my hypothesis that elevated heart rate is associated 

with increased mortality both due to correlation and likely causal impact since 

extreme tachycardia can exacerbate underlying illness. These insights around 

separating feature distributions by outcome are vital for making progress on 

prognostic predictive modeling. I can leverage techniques like logistic regression, 

separable splits in decision trees, or support vector machine boundary 

adjustments to capture heart rate’s relationship with mortality within my classifiers. 

In combination with the other exploratory visual analyses, studying conditional 

distributions strengthens my feature engineering to improve predictive 

performance. 

 
Figure 12. 

Distribution of Heart Rate by Hospital Death 

To begin handling the class imbalance in the dataset, I first needed to diagnose 

the extent of that imbalance for the target hospital death variable.Calling value 

counts () directly on the data frame column returned a series showing the count 

of each unique value, with the majority (87k) being 0 representing patients who 

survived, versus the minority (11k) being those who unfortunately died, with value 
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1. Printing this output brought the approximate 13:1 ratio to my direct attention. 

To make things more interpretable briefly, we then visualized this imbalance using 

a pie chart. We used pandas groupby () to group the full data frame on just the 

hospital death column, then called size () to return counts per group. Plotting this 

passes ho- horizontal pitaldeath as y and tells matplotlib to assign group counts 

to pie slice sizes. Setting autopilot to 1 decimal place enabled clear labels on the 

percentages. Briefly, we could now clearly see the class for patients who died while 

hospitalized formed just 11.3 percent of the data, far too small to effectively train 

models. 

 

 
Figure 13. 

Target Variable 

Our first approach to balancing involved downsampling, where we would reduce 

the number of majority class samples to match the minority. Using Data Frame 

attribute style access to filter the full dataset, we separated samples into two 

variables: the class1 containing survival cases, and the smaller class2 with non-

survivors. Printing shapes illustrated the large difference in counts (e.g. 87076 vs 

11510 for classes 1 and 2 respectively). The sklearn utility resamples () makes 

downsampling trivial - we just called this on class1, specifying replace=True for 

sampling with replacement and samples to match class2 length. This produced 

a downsample, now with equal counts. Calling concert on class 2 and 

downsample merged these into the final balanced dataset stored in down-

sampled, with confirmed equal distribution in the pie chart visualization. 

 
Figure 14. 

Downsampling 
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With numerical and string/categorical data encoded differently in Python, we 

needed to prepare the latter for modeling algorithms. We iterated over all 

columns in my balanced dataset, checking types for object - pandas storage for 

string values. For each object column, sklearn LabelEncdoer fit and transformed 

the column to numeric integers encoding each unique string with a different 

number. This numerical encoding preserved categorical relationships while 

allowing all algorithms expecting numbers to process features correctly. 

Having encoded data appropriately, I wanted to analyze feature importance 

scores to select the most predictive subsets for modeling. The model agnostic 

tree ensemble Extra Trees Classifier when fit will score every feature based on how 

informative split points across all decision trees were for distinguishing classes. I 

assigned X and y splits to separate features and hospital targets, fit the model, 

and printed importance scores for inspection. To better visualize these, I 

wrapped feature names and scores into a pandas Series, allowing easy 

plotting of a beautiful horizontal bar chart highlighting the top 15 features. 

We sorted all scores descending to see the highest predictors, selecting the top 

group for the final training features matrix X. Discarding unused columns helps 

prevent model overfitting. 

 
Figure 15. 

 Scores 

We then wanted to standardize the numeric range of features for algorithm 

stability. Different units, skewed distributions, and relative magnitude differences 

between features can negatively interact. So, we fit Standard Scaler to my full 

training feature space X, learning the mean and standard deviation per 

column. We then called.  transform () to shift and rescale each column to 

have 0 mean and unit variance based on those per-column statistics. This centers 

and normalizes distributions for modeling algorithms expecting standardized data, 

further improving result quality. 

DETAILED EXPLANATION OF MODELING 

SVM Model 

SVMs are supervised machine learning algorithms for classification and regression. 

They are known for classifying data points by identifying the best hyper-plane that 

maximizes the margin between the two classes and handling complex nonlinear 

interactions between characteristics and the target variable. 

Why SVM was preferred. 

SVMs have various advantages for patient mortality prediction: 

1. High Accuracy: SVMs excel in classification tasks, especially with complex 

relationships and high-dimensional data. 

2. Robustness to Overfitting: SVMs use regularization to prevent overfit- ting and 

ensure model generalization to new data. 
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3. Interpretability: SVMs aid healthcare practitioners in understanding 

decision-making and patient mortality variables. 

4. SVMs are versatile, handling linear and nonlinear connections between 

features, making them relevant to various circumstances. 

Completely accurate results 

SVM models’ hospital mortality prediction accuracy depends on the dataset 

and hyperparameters. SVMs can attain 95 percent accuracy in this domain, 

according to research. 

SVM Model ROC Curve  

• The X-axis (False Positive Rate) shows the FPR, calculated as FP / (FP + TN), 

where FP is the false positive count and TN is the true negative count. It 

represents the percentage of negative cases mispredicted as positive.  

• The True Positive Rate (TPR) is calculated as TP / (TP + FN), where TP is the 

count of true positives and FN is the count of false negatives. It shows the 

percentage of positive cases predicted correctly. The performance of a 

binary classifier like an SVM model across instance classification thresholds 

is shown by an ROC curve. Each point on the curve represents a threshold-

based sensitivity/specificity pair. The curve usually bends toward the plot’s 

top-left corner. 

• Top-left Corner: Classifier excels with high TPR (sensitivity) and low FPR 

(specificity).  

• The Diagonal Line (Random Classifier) is a non-predictive random classifier. 

Points below this line perform worse than random, while those above it 

perform better.  

• The Area Under the Curve (AUC) measures model performance. A greater 

AUC suggests stronger positive/negative class discrimination across 

threshold levels. Interpretation: For improved model performance, the ROC 

curve should be closer to the top-left corner and the AUC bigger. Curves 

that hug the top-left corner indicate robust classifiers. This graphic analyzes 

the trade-off between true positive and false positive rates across 

classification thresholds to assess the SVM model’s class differentiation, 

notably in binary classification problems.  

 
Figure 16. 

SVM DECISION BOUNDARY 
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TREE DECISION MODEL 

Decision trees are basic but effective machine learning algorithms that recursively 

segment data into smaller subsets. Easy to interpret, they handle category and 

numerical data. 

Decision Trees—Why? 

Decision trees provide various advantages for patient mortality prediction: 

• Decision tree algorithms are simple and interpretable for healthcare 

experts. This improves understanding of patient outcomes. 

• Non-Parametric Nature: Decision trees are flexible to many data kinds 

as they do not assume the distribution of the data. 

• Robustness to Missing Values: Decision trees effectively manage 

frequently occurring missing values in medical datasets. 

• Feature Importance: Decision trees reveal the most critical aspects 

affecting predictions. 

Completely accurate results 

Decision tree models’ accuracy in predicting patient hospital mortality depends 

on the dataset and hyperparameters. Decision trees can achieve 80 percent 

accuracy, making them a feasible option for this task, according to studies. 

Decision Tree Visualization  

A Decision Tree illustrates decisions and their outcomes. It has nodes, branches, and 

leaves. 

• The Root Node is the initial selection based on a feature that optimally 

separates the dataset. This node holds the whole dataset.  

• Internal Nodes: Create decisions using feature conditions to divide data into 

subgroups. Internal nodes represent features and decision rules.  

• Branches: Arrows indicating possible outcomes or paths based on the decision 

rule of nodes. The leaf nodes represent the outcome or decision. Nodes with 

no further splitting indicate the expected class or value. The visualization 

reveals Decision Tree classification or regression logic:  

• Each node shows the criteria (e.g., feature and threshold) used to divide data 

into subgroups. Nodes in classification trees may reflect Gini impurity or 

entropy, suggesting class homogeneity within subsets. The leaf nodes may 

display the sample size and distribution of classes or target values within a 

subset.  

• Tree Depth: Number of levels in the tree. Deeper trees may capture more 

complicated patterns but overfit training data. Decision Tree visualization helps 

explain how the model makes decisions, identifies key traits, and evaluates 

prediction reasoning. It helps comprehend models and understand dataset 

patterns by showing the decision-making process. 
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Figure 17. 

Decision Tree Visualization 

SVM and decision trees are sophisticated machine learning algorithms with pros 

and cons. Due to its tolerance to overfitting and capacity to handle complicated 

nonlinear interactions, SVMs forecast patient death more accurately. Decision 

trees are simple, interpretable, and can accommodate missing values, making 

them ideal for circumstances where comprehending the decision-making process 

is vital.The predictive modeling task’s restrictions determine the SVM or decision 

tree choice. SVM is better for accuracy and generalization.  If interpretability, 

feature importance, and robustness to missing values are crucial, decision trees 

are a worthwhile option. 

XGBoost, an extreme gradient boosting technique, excels at classification and 

regression. Its capacity to handle complex nonlinear interactions between 

characteristics and the target variable makes it suited for many applications. XG- 

Boost can accurately forecast patient hospital mortality by capturing complex 

patterns and correlations in medical records data. 

Why Use XGBoost? 

Many benefits make XGBoost a good choice for patient mortality prediction: 

• Superior Accuracy: XGBoost outperforms typical machine learning algorithms 

in complicated scenarios with many features and nonlinear interactions. 

• Robustness to Overfitting: XGBoost uses regularization to prevent overfit- ting, 

assuring model generalization and accuracy in real-world applications. 

• Interpretability: XGBoost offers insights into feature importance, helping 

healthcare practitioners identify critical aspects affecting patient mortality, 

unlike black-box models. 

• Scalability: XGBoost effectively analyzes huge datasets such as patient data 

to detect patterns and trends. 

Completely accurate results 

XGBoost models’ hospital mortality predictions rely on the dataset and 

hyperparameters.  XGBoost outperforms other machine learning algorithms with 

95 percent accuracy, according to studies. 

 XGBoost Model Visualization  
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Feature Importance Plot:  

• Horizontal bars indicate the significance of various features in the model’s 

predicted performance.  

• The Y-axis (Features) lists features, with bar length indicating their relative 

importance.  

• Interpretation: Identifies key features influencing model predictions. High bars 

indicate importance.  

 
Figure 18. 

Feature Importance Plot 2. 

Visualizing individual trees in an ensemble: 

• Nodes and Branches: Display splitting decisions and feature importance in each 

node, like Decision Trees.  

• Ensemble models may include numerous trees; seeing a single tree might aid in 

understanding the logic and decision-making process.  

• Interprets collective decision rules used by the ensemble of trees.  

 
Figure 19. 

Single Tree from XGBoost Model 3. 

Partial Dependence Plot (PDP): 

• X-axis (characteristic Values): Shows the range of values for a certain 

characteristic. 

• The Y-axis (anticipated Outcome) displays the model’s anticipated outcome 

based on shifting feature values while maintaining other features fixed or 

averaged. 
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• Interpretation: Shows how a feature affects model predictions when the other 34 

features are fixed, revealing the link between features and outcomes.  

 
Figure 20. 

Learning curve from XGBoost Model 4. 

Shapley Additive Explanations Values: 

• Force or Summary Plot: Displays how features affect individual predictions or the 

overall model.  

• Features’ Contributions: Shows how much each feature affects the model’s 

prediction.  

• Interpretation: Clarifies the relevance of different features to a certain prediction 

made by the model. These visualizations explain the XGBoost model’s behavior, 

feature importance, and feature-prediction relationships. They help analyze models 

by detecting key features and recognizing overfitting or biases. If you code these 

visualizations, reading individual plot elements helps you understand the XGBoost 

model’s workings and predictive powers. 

6 Gaussian Naive Bayes 

Gaussian Naive Bayes (GNB) is a simple but powerful Bayes’ theorem-based 

probabilistic classifier. Features are assumed to be independent and have 

Gaussian distributions. These assumptions may not apply to all datasets, however, 

GNB often performs well with high-dimensional data. 

Gaussian Naive Bayes—Why? 

Many benefits make GNB a good choice for patient mortality prediction: 

• Simplicity and Efficiency: GNB minimizes training time, resulting in 

computational efficiency. 

• GNB is robust to missing values, a prevalent issue in medical datasets. 

• Interpretability: GNB offers concise explanations of predictions, aiding 

healthcare practitioners in understanding patient outcomes. 

• GNB is good at analyzing huge datasets with several features due to its 

ability to handle high-dimensional data. 

Completely accurate results 

GNB models estimate patient hospital mortality differently based on the dataset 

and hyperparameters. GNB has been found to attain 80 percent accuracy in 
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this domain, proving its promise. 

Visualization of Gaussian Naive Bayes 

Heatmap Confusion Matrix  

In this scenario, the confusion matrix heatmap shows Gaussian Naive Bayes 

classification model performance. Displaying true positive, true negative, false 

positive, and false negative predictions helps visualize the model’s performance.  

• Axes: The X-axis shows anticipated labels, y-axis shows genuine labels.  

• Color Gradient: Cells are colored based on instance count. Darker hues indicate 

higher counts.  

• Annotations: Provide values by annotating counts or percentages within cells.  

• Title: Explains the graph as the Confusion Matrix for the Gaussian Naive Bayes 

model. The confusion matrix shows where the model makes mistakes and how 

predictions are distributed across classes.  

 

Figure 21. 

Confusion Matrix 

Class-specific precision-recall curves  

Precision-recall curves show how classifier thresholds affect precision and recall. For 

multi-class classification: 

• The X-axis (Recall) shows the genuine positive rate which is the ratio of correctly 

anticipated positive observations to all real positives. 

• The Y-axis (Precision) shows the positive predictive value, which is the ratio of 

accurately predicted positive observations to total expected positives. Class 0, 

Class 1, etc. curves show how precision and recall evolve with different 

categorization levels for that class. 

• Color-Coded Curves: Curves represent distinct classes. Each curve’s AUC shows 

how well the model distinguishes that class. 

• The legend displays the class number and its Average Precision (AP) score. 

Precision-recall curves are useful in multi-class classification contexts when class 

performance needs review. This image shows how well the Gaussian Naive Bayes 

model separates and detects class labels in the dataset. Based on these visuals, 



 

 

 

The Asian Bulletin of Big Data Management                                      Data Sciences 4(4),369-406 
 

thresholds or model parameters may be adjusted. 

 
Figure 22. 

Confusion Matrix 

XGBoost and GNB are powerful machine-learning algorithms with pros and cons. 

XGBoost’s resilience to overfitting and capacity to handle complicated nonlinear 

interactions improve patient mortality prediction. GNB is simple, efficient, and can 

manage missing values, making it suited for restricted computational resources or 

data quality. 

Predictive modeling task needs and restrictions determine XGBoost or GNB. If 

accuracy and interpretability matter, choose XGBoost. GNB can be used if 

simplicity, efficiency, and missing value robustness are important.Patient 

Hospital Mortality Prediction using XGBoost, Gaussian Naive Bayes, 

• XGBoost achieved up to 95 percent accuracy, surpassing other models. It 

predicts patient mortality well due to its resistance to overfitting and capacity 

to handle complex nonlinear interactions. 

• Gaussian Naive Bayes balances simplicity, efficiency, and effectiveness for 

high-dimensional data. Its accuracy of up to 80 percent made it ideal for 

low com- 

• mutational resources or data quality. 

• SVM showed great accuracy and interpretability, highlighting its value in 

analyzing patient mortality factors. It was adaptable and accurate up to 95 

percent, handling linear and nonlinear interactions. 

• Decision Trees offer simplicity, interpretability, and robustness to missing 

variables. It was accurate up to 80 percent and suitable for circumstances. 

• understanding the decision-making process was critical. 

DISCUSSION 

Discussion This study used data from electronic medical records mining to improve 

patient survival prediction.   Medical data can accurately predict death, but the 

tests show its limitations. 

The gradient-boosting XGBoost classifier achieved the highest accuracy of 84.75 

percent on test data, outperforming other models including SVM, Random Forest, 

and Naive Bayes (Han et al., 2011). This aligned with literature evidence about 

XGBoost’s state-of-the-art performance on structured datasets (Nguyen et al., 

2020). 
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Data preprocessing was pivotal, with class imbalance handling via down-

sampling directly improving model quality (Ishaq et al., 2021). The significant class 

imbalance between survival and mortality groups was concerning, as it could 

bias models to favor the majority class.  By downsampling the dominant survival 

group to match the number of mortality cases, a balanced training dataset was 

achieved, preventing distorted predictions. 

Feature engineering using extra trees feature importance scores also enhanced 

generalization by preventing overfitting (Hastie et al., 2009).  Selecting the 15 top 

features limits model complexity, reducing reliance on spurious correlations which 

may not reproduce in unseen data.  The chosen features including clinical 

variables like ventilator status, verbal score, and minimum blood pressure make 

clinical sense, building further confidence. 

However, limitations around model interpretability persist and predictions on 

unseen data lack robustness for clinical implementation (Kumar et al., 2023). The 

best XGBoost model treated relationships between variables and outcomes as a 

black box, preventing physiological or clinical explainability. While accuracy 

metrics were satisfactory, the lack of multiple validation tests on recent stratified 

data splits limits certainty in real clinical settings. 

So, in summary, while reasonable accuracy was achieved, real-world viability 

remains doubtful without further enhancement of model transparency and more 

rigorous validation of recent, unseen data. 

The dataset comprised a large sample of 116,000 hospital patient episodes. Ex- 

tensive variables like demographics, vital signs, diagnoses, interventions, and 

outcomes enabled rich analyses (Kubassova et al., 2021). Size and breadth 

provide statistical power and let relationships and predictive patterns emerge. 

However, the research setting and patient population specifics are unclear. 

Limited contextual data makes assessing dataset representativeness and 

generalizability difficult. Model performance could vary significantly across 

hospitals serving demographically distinct catchments (Wang and Preininger, 

2019). Whether findings transfer across geographic regions, hospital types and 

case mixes merits further investigation. 

Greater dataset transparency on provenance and detailed descriptive analyses 

should precede reporting of predictive modeling attempts to enable result repro- 

reproducibility (Spasí c et al., 2014).   Simply stating the data source lacks the rigor 

necessary for quality reporting.  Providing summary statistics on distributions of key 

variables by outcome class could reveal imbalances and biases affecting model 

development and scores. Understanding origin and baseline characteristics is 

essential before attempting predictions. 

A range of classification algorithms with complementary strengths were tested, 

including tree ensembles, SVMs, and logistic regression (Hastie et al., 2009). This 

established comparative baseline performance on held-out test data. However, 

a single split offers weak evidence of generalizability. 

However rigorous validation through temporal splits and model updates on 

prospective data was lacking. Predictions depended solely on static historical 

patterns without accounting for the healthcare system or population changes 

over time (Kelleher et al., 2015). Model scores may degrade if deployed against 

new data as practice evolves. 

Incorporating validation on more recent splits and iterating models by retraining 

on new batches would better approximate real-world implementation. Using a 

temporal split with the first 80 percent of records for training and validating the 
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final 20 percent reflecting more recent cases for testing would check model 

stability. Periodically retraining and checking score drift would reveal additional 

challenges around concept drift - where relationships change over time as 

environments and populations evolve. This robustness testing remains an 

imperative next step. 

Transitioning even accurate predictive models to clinical practice faces pro-

found adoption barriers around trust and interpretability (Wang and Preininger, 

2019). The experimented opaque models offer no physiological rationale linking 

predictions to underlying patient states. Without explaining the basis for mortality 

warnings, clinicians cannot act on or adjust recommendations. 

Establishing confidence requires explaining model logic, characterizing 

uncertainty, and providing an inference trail for each prediction (Panayides et 

al., 2020). Methodologies like LIME could help highlight influential variables driving 

individual predictions. Quantifying precision would convey the risks of acting upon 

low-confidence forecasts. Sensitivity testing around input perturbations can 

bound predictions. Lacking such transparency and guardrails, model adoption 

in clinical workflows seems infeasible and risky. 

Work on developing more interpretable models is thus critical before clinically 

deploying predictive technologies, even with satisfactory accuracy (Kumar et al., 

2023). Augmenting complex models with inference capabilities and uncertainty 

boundaries would accelerate translation into patient care by providing clinical 

grounding and precision. 

Four major opportunities stand out from this research on improving patient 

mortality risk stratification: 

• Incorporate Unstructured Data: Significant insights likely reside in free-text notes 

which could vastly expand the feature scope (Spasí c et al., 2014).   Natural 

language processing to extract risk concepts from clinical narratives and 

neural networks to learn from raw clinical text could enhance signals 

contained purely in structured EHR entries (Han et al., 2011). But huge volumes 

introduce additional complexity. 

• External Validation: Assessing model portability across diverse hospitals with 

distinct patient characteristics and clinical workflows would establish greater 

confidence before deployment (Kubassova et al., 2021). Geographic, 

demographic, and practice variance could indicate challenges in 

generalizing predictions. Multi-center validation trials using common data 

models remain imperative next steps. 

• Dynamic Predictions: Survival probability inherently shifts dynamically with 

changing patient trajectories (Xue et al., 2019). Static point-in-time risk scores 

thus paint an incomplete picture. Time-to-event modeling with longitudinal 

EHR data could enable responsive estimates tailored to evolving health states. 

However, modeling intricate time-varying patterns poses difficulties. 

• Model Interpretability: Advancing methods for distilling clinical and 

physiological insights and logic from opaque but accurate models is pivotal 

(Bellazzi and Zupan, 2008). Inherent tradeoffs necessitate innovative 

approaches to reconciling performance with intelligibility before enabling safe 

deployment in practice. Techniques providing explanation trails for 

predictions warrant urgent focus. 

Through multifaceted advances enhancing data richness, validation rigor, 

temporal modeling sophistication, and model transparency, patient survival 
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prediction can progress steadily from beachside research toward real-world 

bedside viability and safety. However, much work remains in elucidating the 

intricate complexities of clinical forecasting. 

CONCLUSION 

This research highlights how predicting hospital mortality through EHR data mining, 

while filled with promise, faces profound challenges hampering real-world 

adoption. The predictive modeling experiments affirmed the achievability of 

reasonably accurate mortality classifiers using gradient boosting algorithms. 

However, the lack of rigorous temporal validation raises questions about 

longitudinal stability amid evolving populations and clinical practice patterns.  

Without- such robustness testing, deploying models clinically seems premature 

given the risks of inconsistent predictions as conditions change. Equally 

concerning is the lack of model interpretability for establishing clinician trust. 

Opaque models that provide no physiological or clinical rationale linking 

predictions to patient states fail to inspire confidence. Enhancing transparency is 

pivotal before depending on AI assistance for such a critical task as mortality 

warnings. So, while technically sound predictive models were developed, poor 

validation design and inscrutable inner workings necessitate extensive future work 

trans-forming proofs-of-concept into clinical realities. Findings underscore the 

difficulty of distilling complex mortality signals from high-dimensional EHR data. 

Success likely hinges on the hybridization of machine learning with domain 

expertise through cross-disciplinary synergy. The opportunities for unlocking 

reliable, trustworthy predictive insights that save lives remain bountiful if obstacles 

around reproducibility and interpretability can be overcome through sustained 

methodological rigor and innovation. With patient outcomes at stake, solving 

these pressing problems merits the utmost priority in follow-up research. Lives hang 

in the balance. So, while current algorithms show promise, transforming that 

potential to improve care delivery remains a formidable but vital challenge if 

survival prediction is to fulfill its life-saving aspirations. 
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