

 THE ASIAN BULLETIN OF BIG DATA MANAGMENT

Vol. 5. Issue 1 (2025)

https://doi.org/10.62019/abbdm.v5i1.320

175

Insecure Software Development and Threat Mapping via Security

Frameworks
Shaiqa Nadeem, *Ahthasham Sajid
Chronicle Abstract

Article history

Received: 01 Feb, 2025

Received in the revised format: 30th Feb,

2025

Accepted: 15th March, 2025

Available online: 30 March, 2025

Integrating security in the software development life cycle has

been a significant concern for researchers, security professionals

and software developers. Security frameworks help to improve

security in SDLC and mitigate threats by promoting the use of

best practices. While in the presence of such best practices,

security is somehow considered to be an afterthought and often

leaves us with insecure software. Insecure web development

makes web applications vulnerable to security threats like

injection attacks, data breaches, privilege escalation, CSRF and

other threats. This research based on mixed methods approach

aims to provide valuable insights for security professionals and

web application developers regarding the use of security

frameworks to map threats for secure web development.

Security frameworks including NIST SSDF, OWASP top 10, OWASP

SAMM, SAFECode 3rd edition and BSIMM13 are involved for this

purpose. The goal is to address the gap by leveraging these

security frameworks to systematically map threats in web

development environment. The research will aim to provide a

comprehensive methodology for identifying potential security

risks, analysing their impact and recommending security

measures tailored to specifically web development

environment. To achieve this, a comparative study of security

frameworks, testing of web applications has been conducted to

achieve the results.

Shaiqa Nadeem & Ahthasham Sajid

are currently affiliated with Department

of Information Security and Data

Science, Riphah Institute of Systems

Engineering, Riphah International

University, Islamabad, Pakistan.

Email: shaiqanadem@gmail.com
Email: ahthasham.sajid@riphah.edu.pk

Corresponding Author*

Keywords: Insecure Web Development, Code Security, Secure Web Development, Threat mapping,

Software Development lifecycle SDLC, Security frameworks.
 © 2025 The Asian Academy of Business and social science research Ltd Pakistan.

INTRODUCTION

Basie Von Solms discussed the difference between cyber security and information

security. In his research he defines cyber security as protecting information in cyber

space only. Whereas, he defines information security to be the protection of

information everywhere. (von Solms & von Solms, 2018). Secure software is resistant to

security threats. Implementation of secure software development practices must be

used to make software secure and resilient to attacks. Insecure software is developed

due to insufficient knowledge of developers about secure software development

practices. (Kanniah & Mahrin, 2024). Brown and Paller discussed in their research the

reason, why developers write vulnerable code? In their study, the reason is knowledge

gap of developers to secure coding practices as well as unawareness to what

constitutes to secure coding. (Brown & Paller, 2008). Most common vulnerabilities in

web are SQL injection, XSS, HTTP response splitting and path traversal. (Backman,

2018). Developers need to know security threats to make their code resistant to those

flaws. (Brown & Paller, 2008). Stats shows that the first ever website was developed in

1991, which reached to 1.88 billion websites by 2018. (Internet Live Stats, 2024). Most

mailto:shaiqanadem@gmail.com
mailto:ahthasham.sajid@riphah.edu.pk

 Insecure Software Development Nadeem, et., al. (2025)

176

significant data breach happened world-wide was experienced by “Yahoo” in 2017.

This data breach compromised account information of 3 billion users. Another security

attack was reported by Alibaba in July 2022 that exposed 1.1 billion users information.

Similarly, LinkedIn reported data breach in June 2021 that compromised 700 million

users’ information. (Statista, 2021). Huge development around web security is needed

with this growth rate of something that is in use to such an extent. (Sundqvist, 2018).

The amount of data breached in these incidents reveals the growing need for web

security.

The importance of developer’s knowledge about web security and how to prevent

common vulnerabilities cannot be neglected. (Sundqvist, 2018). Mitre analysed

security attack report and revealed that most of the attacks exploited common web

vulnerabilities. Web developers who lack web security knowledge are the most

affected ones by data breaches. (Sundqvist, 2018). In industry, training developers

about software security consumes more time and money. It is well known that during

software development insecure coding practices are used by developers that make

applications vulnerable to security threats. Educating software developers about how

to write code that is free of security flaws and resilient to security threats is needed.

(Gasiba et al., 2020). Developers having insufficient awareness about code security,

mostly rely on code snippets available on stack overflow to solve their development

problems. These insecure code snippets oftentimes provide functionality but threaten

software security. (Fischer et al., 2017).

Developers must ensure that the software they are creating does not fulfil just

functionality but is also secure. Emerging new threats reveals the fact that weaknesses

exist somewhere in the software itself. Such weaknesses can easily be exploited by

hackers. The Department of Homeland Security reports that 90% of weaknesses in

software are exploited due to vulnerable code. Many security frameworks provide

best practices to integrate security in SDLC by reducing vulnerabilities in software.

(Ramirez et al., 2020). Best practices given by security frameworks are ignored by

developers due to extensive workload of development as well as pressure to meet

strict deadlines. (Backman, 2018). Many standards and frameworks might not address

all security threats for secure software development when used alone. (Sundqvist,

2018). Common web vulnerabilities are SQL injection, cross-site scripting, remote file

injection and broken access control. (Statista, 2021). Despite advancements in web

development technologies and security protocols, many web applications remain

susceptible to a range of threats like cross site scripting (XSS), sql injection,

authentication bypass and distributed denial of service (DDos) attacks.

Developers often face difficulties in identifying, prioritizing and addressing

vulnerabilities in early stages of development. Current security tools and frameworks,

while helpful, do not always offer a holistic and proactive approach to threat

identification and prevention. Additionally, many frameworks do not provide clear

guidance on mapping security threats to corresponding mitigations within the context

of a particular development environment or web development environment. The

figure 1 shown below provides illustration of the concept behind the objective of the

proposed study. This research focuses to acknowledge web security threats that

makes a web application insecure, suggesting their relevant mitigation best practices

and to understand the effectiveness of security frameworks in addressing those threats

for web development. The purpose of this study is to suggest web developers the use

of security frameworks for specific threats and to enable developers to develop

secure web applications even if they lack knowledge or experience. The study

The Asian Bulletin of Big Data Management 5(1), 175-184

focuses to introduce security in development phase of SDLC for web development.

The underlying objectives for this study are to explore the benefits of using static testing

and dynamic testing in threat mapping to address vulnerabilities that might be missed

by either method individually. To identify specific web applications vulnerabilities

addressed by these security frameworks.

Figure 1.

Relationhip between Proposed Study and Development Team

To compare the strengths and weaknesses of security frameworks in addressing web

application vulnerabilities. To examine the key challenges faced by web developers

in integrating the security frameworks in SDLC.

METHODOLOGY
A comparative study of security frameworks against the threats identified from the

static and dynamic testing of some open-source web applications has been adopted

in the methodology. The methodology consists of several key steps shown below.

Figure 2.

Proposed Methodology Diagram

Data Collection
The first step involves collection of primary data sources for the study.

• Selection of Web Applications For static and dynamic testing of applications,

52 open-source web applications have been selected available on Github. The

selected web applications include e-commerce, communication and content

management applications developed using Javascript, Node.js, Python, Django,

Flask, PHP and C# programming languages.

• Static Testing of Web Applications

Static testing is used to identify vulnerabilities and code errors by reviewing source

code without executing the application. (Aydos & Aldan, 2022). In this study SNYK

 Insecure Software Development Nadeem, et., al. (2025)

178

Code has been selected to perform static testing of selected web applications. The

most popular and used SAST tool by developers is SNYK Code (So Now You Know).

SNYK Code is an effective and reliable tool in identifying code level vulnerabilities and

is suggested to perform SAST of web applications. (Ali & Ammar, 2024).

In figure 3 shown below, threats detected in static testing by SNYK Code of all web

applications are shown in the graph.

Figure 3.

Highly Frequent Threats Detected via Static Testing

In figure 4 shown below, low frequent threats identified by SNYK Code in static testing

of all web applications are mentioned.

Figure 4.

Low Frequent Threats Detected via Static Testing

Dynamic Testing of Web Applications:

Dynamic testing involves the execution of application to detect runtime errors and

security or performance issues. (Aydos & Aldan, 2022). In this study dynamic testing of

selected web applications has been carried out by using Owasp Zap. OWASP ZAP

version 2.12.0 is a reliable version and is suggested to be used for dynamic testing of

web applications. (Potti et al., 2025). In the figure 5 shown below, different high and

low priority threats found by Zap in dynamic testing of all the selected web

applications have been shown.

0 50 100 150 200 250 300 350

Use of password hash

Use of risky cryptographic agorithm

Hardcoded secret

Use of hardcoded credentials

Cross site scripting

SQL injection

Path traversal

Open redirect

Information exposure

Allocation of resources without limit

Improper type validation

Freqency of Threats

Threats identified

0 5 10 15 20 25 30 35

XML injection

Anti forgery token validation

Prototype pollution

Unsafe Jquery plugin

LDAP injection

Sensitive cookie without http only flag

Sensitive cookie in http session without…

Request validation

Regular expression Denial of Service

XML external entity

Use of Risky or broken cryptographic algorithm

Frequency of threats

Threats

The Asian Bulletin of Big Data Management 5(1), 175-184

Figure 5.

Threats Identified Using Dynamic Testing of all web projects

Threat mapping Analysis
The second step involves comparative study of security frameworks to map threats

against mitigation guidelines mentioned in the frameworks. The purpose of doing so is

to evaluate the number of threats for which frameworks provide exactly accurate

preventions, number of threats for which frameworks provide neutral or fuzzy

mitigations and number of threats which are left uncovered by these frameworks. In

this step strengths and weaknesses of each framework within the context to mitigate

identified web security threats will become prominent.

Comparative Study of Security Frameworks with Reference to Identified Threats
Selected security frameworks for this study are Owasp Samm, Owasp Top Ten, Nist

SSDF, Safecode and BSIMM. The factor that is common among all of these security

frameworks is that these frameworks guide the development process of secure

software. These frameworks have been studied thoroughly. The purpose of this

comparative study is to analyse how well and to what extent these frameworks help

in addressing and reducing web application vulnerabilities.

Integration Study
The third step involves the survey of web developers to evaluate developer adoption

rate for each framework and to identify key challenges.

Survey of Web Developers
The purpose to conduct survey is to identify key challenges that are faced by web

developers while integrating security frameworks in the development phase of web

development.

RESULTS
Comparative Analysis of Security Frameworks
To observe the performance of security frameworks for the prevention of identified

threats, a comparison of strengths and weaknesses of security frameworks is needed.

Whereas strengths and weaknesses of frameworks with reference to identified threats

depend on three factors mentioned below.

Covered Threats The figure 6 shown below represents percentage of threats for which

security frameworks provide clear or accurate mitigation guidelines.

 Insecure Software Development Nadeem, et., al. (2025)

180

Figure 6.

Percentage of Covered Threats

Neutralized Threats
The figure 7 shown below represents percentage of identified threats for which

security frameworks do not provide clear or comprehensive mitigation strategies.

BSIMM13 do not neutralizes any threat, that is why there is no bar showing its progress

to neutralize threats.

Figure 7.

Percentage of Neutralized Threats
Uncovered Threats

The figure 8 shown below represents the percentage of threats for which security

frameworks do not provide mitigation strategy.

Figure 8.

Percentage of Uncovered Threats

0% 10% 20% 30% 40% 50% 60% 70%

BSIMM13

OWASP SAMM

OWASP Top Ten

NIST SSDF

SafeCode

Percentage of Covered Threats

Security
Frameworks

0% 10% 20% 30% 40% 50% 60%

BSIMM13

OWASP SAMM

OWASP Top Ten

NIST SSDF

SafeCode

Percentage of Neutralized Threats

Security
Frameworks

0% 20% 40% 60% 80% 100%

BSIMM13

OWASP SAMM

OWASP Top Ten

NIST SSDF

SafeCode

Percentage of Uncovered Threats

Security
Frameworks

The Asian Bulletin of Big Data Management 5(1), 175-184

Survey

The survey of 52 web developers shows developer adoption rate for all security

frameworks included in this study in the figure 9 below. Owasp top ten is adopted by

most of the web developers for web development with a developer adoption rate of

65%, for BSIMM13 is 11.5%, for Owasp Samm is 19.2%, for Nist SSDf is 51.9 and for

SafeCode 3rd edition is 53.8%.

Figure 9.

Developer Adoption Rate of each Framework

When the web developers were asked that do you know which specific threats can

be mitigated by these frameworks included in this study. The figure 10 shown below

represents that not a single web developer had any knowledge about this fact.

Figure 10.

Knowledge of Developers about Threats mitigated by the Frameworks

The figure 11 shown below presents the challenges faced by developers while

implementing the security frameworks.

Figure 11.

Challenges faced by Web Developers while implementing Frameworks

0% 10% 20% 30% 40% 50% 60% 70%

BSIMM

Owasp SAMM

Owasp top ten

NIST SSDF

SafeCode

0% 20% 40% 60% 80% 100%

BSIMM13

Owasp Samm

Owasp top ten

Nist SSDF

SafeCode

Strongly Disagree

Disagree

0% 10% 20% 30% 40% 50% 60% 70% 80%

Complex or impractical mitigation
guidelines

Dispersed mitigation guidelines

Lack of knowledge about covered or
uncovered threats by frameworks

Strongly Agree

Agree

 Insecure Software Development Nadeem, et., al. (2025)

182

DISCUSSION OF SURVEY
The findings indicate that while most web developers are familiar to security

frameworks such as BSIMM, Owasp Samm, Owasp top ten, Nist SSDF and SafeCode

for web development. However, they do not consistently integrate the security

practices prescribed by these frameworks into their daily development workflow.

Developers acknowledge the presence of several challenges that hinder the

effective implementation of these security practices. Among the primary obstacles

are fragmented mitigation guidelines, the complexity to understand these guidelines

and lack of awareness regarding the extent to which each framework addresses,

neutralizes or leaves security threats unresolved. Beyond these specific challenges,

developers also contend with broader constraints such as time management, strict

project deadlines and organizational policies. These general challenges, however,

are common across the development community. Additionally, a significant number

of developers recognize the importance of threat mapping and consider it a crucial

aspect of software development. To enhance the adoption of security frameworks,

developers suggest consolidating mitigation controls for prevalent web security

threats into a unified reference, along with increasing awareness of which threats

each framework effectively prevents, mitigate or leaves unresolved. This, in turn,

would facilitate informed decision making in selecting appropriate framework for web

development and ultimately improve the overall adoption rate of security frameworks

within the industry.
Table 1.

Efficacy of each Framework
Sr # Security Framework %age of Threat

Model Coverage

Covered Threats Neutralized Threats

1. BSIMM13 10% 10% 0%

2. OWASP SAMM 12% 12% 8%

3. OWASP Top Ten 63% 63% 24.5%

4. NIST SSDF 16% 16% 24.5%

5. SAFECode 33% 33% 49%

The above represented data show that BSIMM13 provides best practices to prevent

10% of threats out of all identified threats in this study. While OWASP SAMM provides

best practices to prevent 12% threats, OWASP Top Ten provides best practices to

prevent 63% threats, NIST SSDF provides best practices to prevent 16% threats and

finally SAFECode provides best practices to prevent 33% threats out of all identified

threats during static and dynamic testing of all web applications in this study. Whereas

threat model consists of all threats identified during static and dynamic testing of web

applications and threat model coverage represents percentage of threats identified

by the framework from the threat model.

RESULTS DISCUSSION
This study identified 49 threats in static and dynamic testing of web applications. The

results of this study shows that OWASP top Ten is the most effective whereas BSIMM is

the least effective framework in providing preventive guidelines for web security

threats that can be prevented in the development phase of web development. This

shows that OWASP Top Ten highlights most of the web application security threats and

provides mitigation guidelines to prevent most of the web security vulnerabilities.

Therefore, Owasp Top Ten is suggested to be followed during the software

development life cycle to enhance the security of the web application or website

that is to be developed. The study increases the knowledge of web developers about

the web security threats and efficiency of security frameworks in addressing those

threats. The results of the study not just include identification of web security threats

The Asian Bulletin of Big Data Management 5(1), 175-184

but also provide controls for the identified threats that have adherence to security

frameworks. This methodology makes the web application developers aware of the

threats that can be prevented by them in implementation phase.

CONCLUSION
This study concludes that merely adhering to a security framework in web

development does not inherently ensure the comprehensive mitigation of all security

threats, nor does it guarantee the absolute security of web applications. Rather, the

crux of secure development lies in developers' understanding of the efficacy of these

frameworks in mitigating security vulnerabilities and fortifying software against cyber

threats. It is imperative for web developers to discern which web security threats can

be effectively neutralized and which remain unaddressed despite the application of

security frameworks. Such insights can significantly alleviate the complexities

associated with secure software development. The results of this study stem from an

analysis of the identified challenges of developers that include fragmented

mitigation, complex security guidelines and lack of transparency regarding the threat

landscape. For web developers, it is crucial to recognize the threats that are

mitigated, neutralized or left unresolved by these security frameworks. Ultimately, this

study provides security controls for identified web security threats thus enable and

equip web developers with actionable insights to enhance the security posture of

their applications.

LIMITATIONS
This study intends to provide valuable insights regarding identification and mitigation

of web security threats. Most of the identified threats can be prevented by web

developers by using secure coding guidelines. The study also aims to evaluate the

effectiveness of security frameworks for the prevention of identified threats. The

limitations of this study include identification of security threats that can be prevented

by web developers in the field of web application development. Additionally, the

evolving nature of security threats may limit the comprehensiveness of the findings of

this study.

FUTURE WORK
In future work, the authors of this study propose to include more threats specific to

web environment and refine control selection by considering specific preventive

measures. Moreover, the authors also aim to employ different penetration testing

techniques to web applications developed by following security frameworks in order

to identify how the software behave towards multiple pen testing techniques. Instead

of mapping threats to best practices given by frameworks, different attack techniques

can help in analysing the behaviour of the software developed by following security

frameworks against multiple attacks.

 DECLARATIONS

Acknowledgement: We appreciate the generous support from all the supervisors and their

different affiliations.

Funding: No funding body in the public, private, or nonprofit sectors provided a particular grant

for this research.

Availability of data and material: In the approach, the data sources for the variables are

stated.

Authors' contributions: Each author participated equally to the creation of this work.

Conflicts of Interests: The authors declare no conflict of interest.

Consent to Participate: Yes

 Insecure Software Development Nadeem, et., al. (2025)

184

Consent for publication and Ethical approval: Because this study does not include human or

animal data, ethical approval is not required for publication. All authors have given their

consent.

REFERENCES

Ali, E. A., & Ammar, F. M. (2024). SAST tools and manual testing to improve the methodology of

vulnerability detection in web applications. The International Journal of Engineering

and Information Technology, 12(1).

Aydos, M., & Aldan, K. (2022). Security testing of web applications: A systematic mapping of

the literature. Journal of King Saud University - Computer and Information Sciences,

34(10), 7633-7650.

https://www.sciencedirect.com/science/article/pii/S131915782100269X

Backman, L. (2018). En jämförande studie mellan utvecklares medvetenhet kring

mjukvarusäkerhet och existerande sårbarheter i deras mjukvara (Why is security still an

issue?-A study comparing developers' software security awareness to existing

vulnerabilities in software applications) [Master’s thesis, Linköping University]. Linköping

University Electronic Press.

Brown, M., & Paller, A. (2008). Secure software development: Why the development world

awoke to the challenge. Information Security Technical Report, 13(1), 40-43.

https://doi.org/10.1016/j.istr.2008.03.001

Fischer, F., Böttinger, K., Xiao, H., Stransky, C., Acar, Y., Backes, M., & Fahl, S. (2017). Stack

Overflow considered harmful? The impact of copy & paste on Android application

security. Proceedings of the IEEE Symposium on Security and Privacy, 121–136.

https://doi.org/10.1109/SP.2017.31

Gasiba, T., Lechner, U., Cuellar, J., & Zouitni, A. (2020). Ranking secure coding guidelines for

software developer awareness training in the industry. OASIcs.ICPEC, 2020(11).

https://doi.org/10.4230/OASIcs.ICPEC.2020.11

Internet Live Stats. (2024). Total number of websites. Internet Live Stats. Retrieved June 2, 2024,

from https://www.internetlivestats.com/total-number-of-websites/

Kanniah, L., & Mahrin, M. N. (2024). A review on factors influencing implementation of secure

software development practices. International Journal of Computer Systems

Engineering. Retrieved from https://d1wqtxts1xzle7.cloudfront.net/...

Larochelle, D., & Evans, D. (2002). Improving security using extensible lightweight static analysis.

IEEE Software, 19(1), 42–51. https://doi.org/10.1109/52.976940

Potti, U.-S., Huang, H.-S., Chen, H.-T., & Sun, H.-M. (2025, January 10). Security testing framework

for web applications: Benchmarking ZAP V2.12.0 and V2.13.0 by OWASP as an

example. arXiv. https://doi.org/10.48550/arXiv.2501.05907

Ramirez, A., Aiello, A. J., & Lincke, S. J. (2020). A survey and comparison of secure software

development standards. 2020 13th CMI Conference on Cybersecurity and Privacy

(CMI), 1–6. https://doi.org/10.1109/CMI51275.2020.9322704

Statista. (2021). Biggest online data breaches worldwide as of March 2021, by number of

records exposed. Statista. Retrieved June 2, 2024, from

https://www.statista.com/statistics/290525/cyber-crime-biggest-online-data-

breaches-worldwide/

Sundqvist, J. (2018). Reasons for lacking web security: An investigation into the knowledge of

web developers [Bachelor’s thesis, Blekinge Institute of Technology]. URN: nbn:se:bth-

17008

von Solms, B., & von Solms, R. (2018). Cybersecurity and information security – What goes

where? Information and Computer Security, 26(1), 2-9. https://doi.org/10.1108/ICS-04-

2017-0025

2025 by the authors; The Asian Academy of Business and social science research Ltd Pakistan. This is an open

access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license

(http://creativecommons.org/licenses/by/4.0/).

https://www.sciencedirect.com/science/article/pii/S131915782100269X
https://www.internetlivestats.com/total-number-of-websites/
https://d1wqtxts1xzle7.cloudfront.net/87863422/10005706.pdf?1655872507=&response-content-disposition=inline%3B+filename%3DA_Review_On_Factors_Influencing_Implemen.pdf&Expires=1717335701&Signature=ShKXrMIz4y03adLtKfOYL2cioxYnnFjA7eipiYMDTN7hgCxB20eXEc876im8nBqU0A~8gB4AtyCcfQNM2RYodcxQPmcHwqAWKJXgmaf2qrEjNIEPw2w1E-n9~5Y81gJcC8p~HUx8R5Y74ZsDZeYqKtRXQmmSXQ6zschalvJfIc5xZgepZeXpns0tNw11LseSHCYFN2np3dmZIYcbNkNv28EoV8G8~5Ibvq4kucqx8iWKwaun0Bq69Wr0kTSLNsi2k3ZRmbhz7SUWBAn9Ak5x9FSsUlLWKr49XWu7asnHHxK7vQD7gZSzMdUBibA6Yezvdykz0xbfEWxlmS9Nu4eT0w__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://doi.org/10.48550/arXiv.2501.05907
https://doi.org/10.1109/CMI51275.2020.9322704
https://www.statista.com/statistics/290525/cyber-crime-biggest-online-data-breaches-worldwide/
https://www.statista.com/statistics/290525/cyber-crime-biggest-online-data-breaches-worldwide/
https://doi.org/10.1108/ICS-04-2017-0025
https://doi.org/10.1108/ICS-04-2017-0025
http://creativecommons.org/licenses/by/4.0/

