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This paper offers an extensive exploration of Distributed Denial of 

Service (DDoS) attacks targeting Software-Defined Networking (SDN) 

environments and their centralized controller vulnerability. Based on a 

virtual testbed developed using Mininet and Ryu controller, different 

DDoS attacks, i.e., SYN, UDP, and ICMP floods, were simulated to check 

their effect on SDN performance indicators like CPU utilization, latency, 

throughput, and saturation of the flow table. Tests indicated that SYN 

flood attacks put the controller under most stress, generating excessive 

Packet_In messages, 100% CPU spikes, and extreme packet loss. UDP 

floods caused link saturation and even higher packet loss from stateless 

operation. ICMP floods had lesser but still significant impact on 

performance. In order to mitigate these vulnerabilities, the research 

employed a machine learning-based detection model that was 

trained on traffic logs-extracted features. Six supervised models were 

compared, with XGBoost having the best accuracy (98.2%), then 

Random Forest and Neural Networks. Inter-arrival time, flag count, and 

bytes per second were discovered to be the key indicators of malicious 

behavior. The results identify the need for embedding smart, real-time 

detection systems into SDN frameworks in order to achieve network 

robustness and lay the foundation for active DDoS mitigation 

techniques. 
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INTRODUCTION 

During the last ten years, remarkable developments in computing technologies have 

taken place, fueled by tireless work from developers and researchers. These 

advancements have evolved a sophisticated digital environment that facilitates users to 

accomplish numerous tasks swiftly at low costs. Among these advancements, cloud 

computing is a groundbreaking platform, providing on-demand access to resources on 

a pay-as-you-go paradigm (Butt et al. 2023). Its advantages have attracted significant 

attention from both government agencies and IT sectors, mainly because of its ability to 

minimize infrastructure expenses and maintenance loads. Virtualization is a pillar of cloud 

computing, which makes the dynamic assignment of resources like storage, software, 

and processing capacity possible. This method has drastically transformed the way 

networks have been built and maintained over the last decade (Sharma et al. 2022). SDN 
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facilitates currently networks by transforming physical network links to logical links and 

allowing central control of networks services (Khaliq et al., 2018). SDN enables cloud 

service providers to achieve cost optimization, smart worldwide connectivity, better 

security, and lower downtime (Khaliq et al., 2023). 

 

Figure 1. 

SDN facilitates currently networks as shown in figure 1 by transforming physical network 

links to logical links and allowing central control of networks services (Khaliq et al., 2018). 

SDN enables cloud service providers to achieve cost optimization, smart worldwide 

connectivity, better security, and lower downtime (Khaliq et al., 2023). SDN offers an 

application layer for programs that offer efficient solutions for key network operations like 

intrusion detection, auto-scaling, and monitoring of networks (Gadallah et al., 2021). The 

evolution of Software defined- networking and cloud computing enables cloud service 

providers to accomplish lots of virtual networks deprived of depending on conventional 

separation methods like VLAN. SDN is a major model shift in designing networks. 

Software-Defined Networking (SDN) brings a paradigm change by separating the control 

plane from the data plane, making it possible for network administrators to dynamically 

observe, control, and optimize network traffic. In cloud computing environments, SDN 

makes it easy to allocate network resources flexibly, with infrastructure being able to 

change in real time to match changing workloads and application needs. This ability to 

adapt ensures optimal performance under changing circumstances. Nevertheless, in 

spite of this segregation of architecture, SDN is still exposed to traffic overloads—most of 

all those precipitated by Distributed Denial of Service (DDoS) attacks. Attackers can take 

advantage of vulnerabilities found in main SDN elements such as the controller, 

southbound and northbound APIs, and switches, thus compromising the network's 

security and stability  (Rawat et al., 2023). 

DDoS attacks constitute an existential threat to cloud computing for both service 

providers and end-users through interrupting access to services. These attacks usually 

consist of several compromised systems that overwhelm a victim with redundant traffic 

to make it unusable. such attacks take advantage of distributed nodes to overconsume 

resources. Recent figures show that prominent cloud platforms such as Amazon AWS EC2 

and Rackspace have incurred major monetary losses as a result of these intrusions. 
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Appalling, the initial half of the year 2020 alone experienced around 5.4 million DDoS 

attacks, highlighting the increasing volume and effect of these attacks as shown in figure 

2. (Valdovinos et al., 2021)(Pandey, 2021)(Ateş et al., 2019)(Raj & Pani, 2021)(Dahiya & 

Gupta, 2020) It is critical for an organization to have the capability to detect and mitigate 

Distributed Denial of Service (DDoS) attacks effectively to ensure operational resilience 

and service availability. For this purpose, it is critical to have a solid system that is capable 

to evaluate real-time networks traffic and sense irregularities prior to them turning into 

major threats. A mechanism that can automate network traffic classification and notify 

administrators when suspicious patterns are detected is critical. While several 

mechanisms for DDoS defense have been proposed, the ongoing nature of attack 

innovations creates a never-ending challenge for early detection. Current solutions are 

likely to provide early warning functionality but suffer from high false positives. On the 

other hand, more responsive and accurate approaches may incur operational 

overhead or cause resource inefficiencies and economic costs. To overcome these 

issues, we introduce a new framework called RDAER, which combines essential 

elements—feature selection, clustering of traffic, prediction of attacks, and classification 

of traffic—into a single model specifically designed for SDN-based cloud environments. 

The framework is intended to improve both the accuracy and responsiveness of DDoS 

detection to provide more effective protection against new threats. (Dahiya & Gupta, 

2020) (MahdaviHezavehi & Rahmani, 2020)(Sadeghpour et al., 2021)(Lee et al., 

2011)(Ribeiro et al., 2023). 

In the last few years, many intrusion detection methods have been proposed; yet, 

comparatively fewer have been actually designed with a focus on anomaly detection. 

The main difficulty is to design an adaptive, resilient, and easy-to-use methodology that 

can identify anomalous activity in the presence of the rising complexity and speed of 

today's cyber threats, as well as the vast extent of today's networks. Different methods—

like data mining, statistical analysis, machine learning, and knowledge-based systems—

have been utilized to identify network anomalies. From 2010 onwards, most of these 

methods have been applied in isolation, resulting in high false positive rates. In 2015, the 

research trend changed towards hybrid methods, where the combination of two or more 

intrusion detection methods allowed for better detection of DDoS attacks. (Venkatesh & 

Anuradha, 2019)(Fouladi et al., 2020).  Though these developments enhanced detection 

accuracy, they also added greater computational requirements and resource utilization. 

In reaction, follow-up studies investigated the identification and selection of the best 

features that could minimize detection time and system complexity without sacrificing 

effectiveness (Karthick et al., 2022). 

 
Figure 2. 
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A paper in (Alubaidan et al., 2023) utilized several time series analysis methods to predict 

DDoS attacks by anticipating traffic patterns based on anomaly scores. These scores 

were then utilized to label traffic as normal or malicious. Another study (Samaan & Jeiad, 

2023) proposed a novel method for DDoS detection that utilized Lattice Structural Access 

Rates, referred to as S2RF2S, for filtering features. For classification, the research employed 

a Soft-Max Behavioral-Based Ideal Neural Network (SxB2IN2), which attained a detection 

rate of 90%. In another study (Zhou et al., 2023), a set of machine learning models such 

as Long Short-Term Memory (LSTM), Logistic Regression, Random Forest (RF), Support 

Vector Machine (SVM), and K-Nearest Neighbor (KNN) was employed to emphasize the 

critical role of proper feature selection in improving detection performance. Of these, 

the RF classifier achieved the best DDoS detection precision of 99% with only 11 selected 

features. 

In addition, research (Najafimehr et al., 2022) utilized Apache Spark to implement a 

model for DDoS attack detection in SDN environments. Of the algorithms tested, the 

Decision Tree (DT) classifier was found to be the most accurate at 93.6% and hence 

would be the best for real-time deployment. Further, research work in (Dinh & Park, 2020)  

used the popularly used LSTM model to identify anomalous traffic within distributed SDN-

based edge computing networks. Comprehensive testing on five datasets, each 

involving three typical type of attacks, found that the suggested CoWatch model 

attained 93.30% prediction accuracy in identifying and predicting Distributed DoS attack 

and their respective threat streams through a cooperative forecast process. 

(Peng et al., 2018) proposed a mixture prototypical that combined both unsupervised 

and supervised learning approaches. To distinguish between attack traffic and normal 

data, they used a clustering algorithm in conjunction with a variety of flow-based criteria. 

The generated clusters are designated using a categorization technique founded on 

precise statistical variables. (Suárez-Varela & Barlet-Ros, 2018 proposed an improved 

technique to detect compromised openflow switches that uses a multivariate time series 

analysis and Recurrent Neural Networks (RNNs) for classification purposes. Their 

investigation yielded an accuracy of 96.99% and a detection rate of 98.51%. Peng et al. 

2019 proposed an anomalous method for detection of flows for SDN that uses the double 

P-value of transductive confidence machines in conjunction with the KNN algorithm. 

In a separate work [28], a scalable classification and flow monitoring approach for open 

flow was proposed, based on a sampling strategy. This categorization methodology 

combines deep inspection of packets with ML methods. Paper [29] promotes the use of 

ML to combat DDoS attacks that are cloud-based. The project includes acquiring input 

data from cloud modules, dimensionality reduction, feature extraction, noise filtration 

and classification using a ResNet-101-based Kernel Extreme Learning Machine (KELM). In 

a separate study, researchers used K-means clustering and agglomerative, as well as 

(PCA) Principal Component Analysis, to extract features. A system of voting is used to 

evaluate if the data is normal or suggests an assault. This technique had a 96.66% 

classification accuracy.  

Mosayeb et al. 2022created RAD, a three-phase statistical approach meant to sense 

Distributed DoS attacks by scoring users and categorizing them as benign or assaulting. 

The three important parameters— jitter, drop and delay—are utilized to recognize 

probable attack behavior. The RAD model was examined by means of the CICDDoS2019 
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dataset and was compared against four additional recognition methods, and it reached 

80% precision and 99% recall. Rajasree et al. (2019) developed a clustering method fuzzy 

bat that classifies comparable patterns and predicts anomalous behavior using a 

deviating anomaly score. The correlation of events between the cloud service provider's 

virtual machine instance and the list of questionable sources is utilized to identify the 

malicious source.  

This strategy lowered the number of false alarms while effectively detecting anomalies. 

Girish et al. (2023) created neural network that uses bidirectional and stacked LSTM 

models. The model was tested with data obtained from OpenStack, which included 10 

characteristics and a categorization label. By means of the binary cross-entropy function 

as a loss function, the proposed model achieved 94.61% training set accuracy and 

93.98% test set accuracy. A study of current studies demonstrates a lack of inclusive 

method that assimilates time-series analysis, clustering, event correlation, feature 

selection techniques, and for earlier detection of Distributed DoS attacks in Software 

defined cloud setups. Correlation of events is critical in classifying trends in network and 

abnormalities in distributed networks. Furthermore, an urgent improvement is needed to 

accurately detect DDoS. 

PROPOSE WORK 

Experimental Setup 

The testbed is constructed based on a virtual SDN setup via Mininet network emulation 

and Ryu controller as the SDN control plane as shown in figure 3. The goal is to emulate 

and analyze the effect of Distributed Denial of Service (DDoS) attacks on the SDN design, 

specifically concentrating on the centralized controller and  

 

Figure 3. 

flow management system. 

Network Topology 

The emulated topology is made up of four switches (s1 to s4) and sixteen hosts (h1 to h16), 

arranged as follows: 

•Three legitimate hosts are connected to each switch, making a total of 12, and one 

attacker host making a total of 4. 

•tThe switches are connected in a mesh-like structure with a single controller node. 
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The topology was deployed in Mininet through a custom Python script. The script initializes 

OpenFlow switches and connects them to the controller. The controller (Ryu) is executed 

independently and communicates through the loopback interface. 

Traffic Generation 

Legitimate Traffic 

•tLegitimate hosts (h1–h12) exchange traffic through iperf and ping both in TCP and 

ICMP modes. 

•Several simultaneous sessions are established to mimic the real-world workload. 

• Each test duration set to 300 seconds to record consistent behavior. 

Attack Traffic 

The attacker host (h13 to h16) each initiate a separate type of attack traffic using hping3 

and Scapy. The below-mentioned attack vectors were taken into account: 

• SYN Flood 

o Targets TCP handshake by sending TCP SYN packets to arbitrary or specific ports. 

o Command: hping3 -S -p 80 -i u1000 --flood <target IP> 

• UDP Flood 

o Floods the target with UDP packets without waiting for replies. 

o Command: hping3 --udp -p 80 -i u1000 --flood <target IP> 

• ICMP Flood 

o Sends ICMP Echo Requests at a high rate. 

o Command: ping -f <target IP> 

These attacks were directed against either individual victim hosts or broadcast across 

subnets based on the experiment. 

Monitoring Tools and Metrics 

We monitored performance using the following tools: 

• CPU usage: Monitored through htop and controller logs. 

• Latency and throughput: Measured through ping and iperf. 

• Packet loss: Captured through tcpdump and interface statistics. 

• Flow statistics: Retrieved through ovs-ofctl dump-flows and special Ryu event 

handlers. 

Experimental Scenarios and Observations 

Scenario 1: Baseline (No Attack) 
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To create a control, the baseline test was run without malicious traffic. 

Observations: 

•Setup time of flows: 6–10 ms 

•Packet delivery ratio (PDR): ~98–100% 

•CPU utilization: 2–5% on controller 

•Flow table entries: Average of 40 per switch 

•Throughput: Consistently above 95 Mbps for each iperf session 

The network operated in its best state, with negligible delay and no packet loss. Controller 

performance was stable, and the switches handled their flow tables without overflows. 

Scenario 2: SYN Flood Attack 

The SYN flood attack was launched from four attacker hosts concurrently. Each 

host transmitted 10,000 SYN packets per second to random ports on various legitimate 

hosts. Because each SYN packet is distinct, the switches forward the packets to the 

controller through Packet_In messages, causing new flow entries. 

Observations: 

•\tCPU Load: The CPU usage of the controller reached 90–95%, sometimes 100%. 

•\tLatency: Legitimate flow setup time rose significantly to 150–300 ms. 

•\tPacket Drops: Doubled tenfold. An average of 30–50% of valid packets were 

dropped during load. 

•\tFlow Table Saturation: All switches indicated full capacity in their flow tables within 

15–20 seconds. 

•\tThroughput: Reduced to as low as 25–40 Mbps per session. 

Analysis 

SYN floods bombarded the controller with too many new flow requests. As each new 

packet contained a different 5-tuple (source IP, destination IP, source port, destination 

port, protocol), the switches could not match them to any existing 

rules, and this created a Packet In flood. The Ryu controller, which 

was not optimized for such high loads, took time to process, leading to delays and 

packet losses. 

Scenario 3: UDP Flood Attack 

Every attacker created about 15,000 UDP packets per second to random ports on 

random hosts. UDP is stateless, hence more challenging to handle in real time. 

Observations: 

•_CPU Load: Averaged between 80–90% on the controller. 

•_Latency: Lower than SYN flood, averaging 100–200 ms. 

•_Packet Loss: Around 45–60% over legitimate flows. 

•_Throughput: Reduced to ~20–30 Mbps per flow. 

•_Link Saturation: Experienced heavy congestion on switch and controller links. 

In contrast to TCP, UDP does not use handshaking. Yet, the randomness of source and 
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destination addresses created many flow entries and control messages. As UDP floods 

also put pressure on bandwidth between switches and controller, it led to link 

congestion and queue overflow at the switch level. The controller 

was often backlogged by packets waiting for decision, creating more latency 

and less throughput. 

Scenario 4: ICMP Flood Attack 

This test mimicked a large amount of ICMP echo requests sent at around 5000 packets 

per second per attacker. 

Observations: 

• CPU Load: Increased to 50–65% — less than SYN and UDP attacks. 

• Latency: Went up moderately to 80–120 ms. 

• Packet Loss: Around 25–30% during peak. 

• Flow Table Usage: Increased but did not fill up as quickly as other attacks. 

• Throughput: Affected slightly (~70 Mbps per session). 

Analysis: 

ICMP floods were not as successful in overloading the controller due to the fact that most 

packets used repetitive patterns that would match current flow rules. Nevertheless, 

because some packets utilized different ICMP IDs and sequence numbers, a reasonable 

number of Packet_In events were still caused. The effect was a poor but not totally 

disrupted service. 

DETAILED RESULTS ANALYSIS 

Table 1. 

CPU Usage Comparison 

Scenario Controller CPU Usage (%) 

Baseline 2–5 

SYN Flood 90–100 

UDP Flood 80–90 

ICMP Flood 50–65 

The SYN flood utilized the most CPU due to its random and dynamic packet nature, which 

made the controller create new flow rules perpetually. The event loop of the controller 

became the main point of bottleneck as shown in table 1. 

Table 2. 

Flow Setup Time 

Scenario Avg Flow Setup Latency (ms) 

Baseline 8–10 

SYN Flood 150–300 
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Scenario Avg Flow Setup Latency (ms) 

UDP Flood 100–200 

ICMP Flood 80–120 

As more Packet_In messages are generated, the controller queues them for processing, 

and the increased latency is a reflection of both queue delays and rule installation delays 

on switches. 

Packet Delivery Ratio The packet loss in the UDP flood is slightly higher than in SYN due 

to concurrent link saturation and controller overload. ICMP flood remains moderate in its 

impact due to the relatively simple processing requirements as shown in table 2. 
Table 3. 

Scenario Packet Loss Rate (%) 

Baseline <2 

SYN Flood 35–50 

UDP Flood 45–60 

ICMP Flood 25–30 

Table 4. 

Throughput of Legitimate Hosts 

Scenario Avg Throughput per Host (Mbps) 

Baseline 95–100 

SYN Flood 30–50 

UDP Flood 20–40 

ICMP Flood 60–70 

The throughput degradation aligns closely with CPU and packet loss metrics. The more 

severe the attack on controller resources, the lower the resulting throughput for normal 

users. 

Flow Table Entries 

• Under SYN flood, flow tables filled up within 20 seconds. 

• Under UDP flood, flow tables showed near-capacity within 40–50 seconds. 

• ICMP flood resulted in only partial occupation (~60–70%). 

Once the flow tables are full, new flows are dropped, and switches revert to default 

behavior, either dropping packets or forwarding to controller — further worsening the 

bottleneck as shown in table 3. 

Discussion: These tests show the susceptibility of SDN controllers to DDoS attacks. Although 

centralized control is desirable for network programmability, it presents serious danger in 

the face of malicious traffic.  

The most effective attack was the SYN flood, which flooded the controller with high-

entropy flows. The UDP flood further exacerbated problems by saturating links and 



 

 

 
 Machine Learning Approach to DDoS Detection                                            Ahmed, K, et.al., (2025) 

44 
 

inducing buffer overflows. The ICMP flood, although less substantial, still impaired network 

performance. 

From a research perspective, this underscores the necessity for:  

• Distributed control planes to prevent single points of failure. 

• Early detection based on packet rates and entropy 

• Proactive rate limiting and filtering at the switch level. 

• Hardening of controllers, such as multi-threading, load balancing, and smart 

queue management. 

These results support the creation of DDoS-resistant SDN frameworks, which incorporate 

defense mechanisms at both control and data planes. 

DDoS Attack Prediction Using Machine Learning in SDN Environments 

With the concentration of control in SDN designs, the controller is a primary candidate for 

DDoS attacks. Although rule-based detection can assist, it lacks flexibility. Machine 

Learning (ML) provides a more dynamic and smart method of early detection and 

mitigation of such attacks. Based on the simulation of attacks and traffic patterns 

experienced in previous experiments, this section discusses how to utilize supervised ML 

models to determine network traffic as malicious or benign. 

DATASET CREATION AND FEATURE ENGINEERING 

Data Collection 

The test dataset was assembled from attack simulations logs. The traffic was grabbed at 

the switches using tcpdump and processed through Python scripts as well as such tools 

as Wireshark and Scapy. Each packet trace was marked either as: 

• 0 → Benign 

• 1 → DDoS Attack (SYN flood, UDP flood, or ICMP flood) 

We developed a balanced dataset of 100,000 samples consisting of 50,000 attack flows 

and 50,000 normal flows. 

Features Extracted 

Each record in the dataset includes the following features: 

Table 5. 

Feature Description 

src_ip Source IP address (converted to categorical) 

dst_ip Destination IP address (converted to categorical) 

src_port Source port number 

dst_port Destination port number 

protocol Protocol used (TCP, UDP, ICMP) 

packet_count Number of packets in the flow 
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Feature Description 

avg_packet_size Mean size of packets 

flow_duration Duration of the flow in milliseconds 

inter_arrival_time Average time between packets 

bytes_per_second Total bytes / duration 

flag_count Count of SYN, ACK, RST flags (for TCP) 

label Binary class (0 = benign, 1 = attack) 

Categorical features (src_ip, dst_ip, protocol) were encoded using one-hot encoding. 

The final dataset was normalized using MinMaxScaler. 

Machine Learning Models Used 
We used six widely adopted supervised classification algorithms. The models were 

implemented in scikit-learn and trained on an 80/20 train-test split. 

1. Logistic Regression (LR) 

A linear model ideal for binary classification. 

• Pros: Simple, interpretable, quick to train. 

• Cons: Limited in capturing complex non-linear patterns. 

Results: 

• Accuracy: 89.6% 

• Precision: 88.2% 

• Recall: 87.5% 

• F1 Score: 87.8% 

Despite its simplicity, Logistic Regression performed fairly well, indicating that basic traffic 

features already provide some separation between normal and malicious traffic. 

2. Random Forest (RF) 

An ensemble of decision trees using bagging for robustness. 

• Pros: High accuracy, reduces overfitting, handles mixed feature types well. 

• Cons: Less interpretable, slower training on large datasets. 

Results: 

• Accuracy: 96.4% 

• Precision: 95.8% 

• Recall: 96.9% 

• F1 Score: 96.3% 

Random Forest provided a significant boost in performance due to its ability to handle 

complex, non-linear relationships and feature interactions. 
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3. Support Vector Machine (SVM) 

A classifier that constructs hyperplanes in high-dimensional space. 

• Pros: Effective in high-dimensional spaces. 

• Cons: Slower training on large datasets, requires careful tuning. 

Results: 

• Accuracy: 91.2% 

• Precision: 90.3% 

• Recall: 91.7% 

• F1 Score: 91.0% 

SVM with a radial basis function (RBF) kernel performed well, especially when tuned using 

grid search. It provided a strong boundary between classes, especially for ICMP-based 

attack. 

4. K-Nearest Neighbors (KNN) 

A non-parametric method that classifies based on proximity to training samples. 

• Pros: Easy to implement, no training phase. 

• Cons: Computationally expensive at prediction time, sensitive to irrelevant 

features. 

Results: 

• Accuracy: 88.1% 

• Precision: 87.2% 

• Recall: 86.5% 

• F1 Score: 86.8% 

KNN was fast to prototype and gave decent performance but suffered on larger test sets 

due to latency in distance computation. 

5. Gradient Boosting (XGBoost) 

A high-performance gradient boosting model optimized for speed and accuracy. 

• Pros: Top-tier accuracy, handles missing values and non-linearity well. 

• Cons: Requires careful hyperparameter tuning, higher memory usage. 

Results: 

• Accuracy: 98.2% 

• Precision: 98.0% 
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• Recall: 98.5% 

• F1 Score: 98.2% 

XGBoost outperformed all other models. It captured complex interactions between 

features like inter-arrival time and protocol-specific flags, making it ideal for SDN traffic 

analysis. 

6. Neural Networks (MLPClassifier) 

A simple feedforward multi-layer perceptron with one hidden layer. 

• Pros: Flexible, can model non-linear relationships. 

• Cons: Requires large dataset, hyperparameter tuning, can overfit. 

Results: 

• Accuracy: 94.7% 

• Precision: 94.1% 

• Recall: 94.9% 

• F1 Score: 94.5% 

Neural networks performed very well but slightly below XGBoost and Random Forest. Their 

performance improved significantly with proper regularization (dropout) and activation 

functions  

Model Comparison 

 

Figure 4. 

INSIGHTS AND DISCUSSION 

Feature Importance: 

• The most significant features across all models were: 

• inter_arrival_time 

• flag_count 
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• bytes_per_second 

• These features change dramatically under DDoS conditions, making them ideal 

for classification. 

Model Suitability: 

• XGBoost and Random Forest are best for high-accuracy environments. 

• Logistic Regression is ideal for quick prototyping or low-resource settings. 

• Neural Networks offer scalability but require GPU for large datasets. 

Real-Time Detection: 

• Models like Random Forest and XGBoost can be embedded into SDN controllers 

using APIs or microservices to analyze traffic features in near real-time. 

• Integration with Ryu via REST APIs allows triggering of mitigation flows upon 

classification. 

LIMITATIONS 

• Models are only as good as the dataset. Synthetic data must closely mimic real-

world attack behavior. 

• Static models may degrade over time; retraining or online learning is needed for 

evolving attack patterns. 

CONCLUSION AND RECOMMENDATIONS 

Based on the performance and generalizability, XGBoost and Random Forest emerge as 

the most effective models for detecting DDoS attacks in SDN environments. They provide 

high accuracy and robustness with relatively low latency in prediction. These models, 

when combined with lightweight feature extraction scripts and integrated into the SDN 

control plane, can provide early detection, thus reducing the risk of controller saturation. 

FUTURE RECOMMENDATIONS  

• Applying unsupervised learning to detect zero-day attacks. 

• Using Recurrent Neural Networks (RNNs) for sequence-based traffic prediction. 

• Building an automated mitigation loop tied to the classification output. 
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