

ASIAN BULLETIN OF BIG DATA MANAGEMENT

<http://abbdm.com/>

ISSN (Print): 2959-0795

ISSN (online): 2959-0809

Bridging the Governance Gap: Integrating Artificial Intelligence in South Africa's Public Policy Implementation

Ngwako Kamogelo Makhura

Chronicle

Article history

Received: Feb 3, 2025

Received in the revised format: March 17, 2025

Accepted: April 4, 2025

Available online: May 02, 2025

Ngwako Kamogelo Makhura is currently affiliated with the SESP Saudi Electric Services Polytechnic, Saidi Arabia.

Email: makhurangwako@gmail.com

Abstract

This study explores the potential of Artificial Intelligence (AI) to address persistent challenges in South Africa's public policy implementation, including inefficiency, poor resource allocation, and weak interdepartmental coordination. Despite progressive policies, South Africa struggles with execution due to socioeconomic disparities, bureaucratic inertia, and limited managerial capacity. Drawing on international case studies from countries like Singapore and the UK and policy document analysis within South Africa, this research adopts a qualitative methodology to evaluate how AI can enhance governance through machine learning, automation, and predictive analytics. The findings reveal that AI can significantly streamline administrative processes, enable real-time data-driven decision-making, and optimize the equitable distribution of public resources in critical sectors such as healthcare, education, and public safety. However, successful integration requires overcoming significant infrastructural and ethical challenges, particularly regarding algorithmic bias, data privacy, and the digital divide. This paper proposes a strategic framework for AI adoption tailored to South Africa's unique governance context, emphasizing the importance of pilot projects, building public trust, implementing ethical safeguards, and strengthening institutional capacity. Ultimately, the research argues that with a carefully managed and inclusive approach, AI can play a transformative role in bridging the gap between policy design and implementation, enhancing both efficiency and equity in governance.

Corresponding Author*

Keywords: Artificial Intelligence (AI), Public Policy Implementation, Governance, South Africa, Predictive Analytics, Administrative Efficiency, Resource Allocation, Ethical Challenges, Digital Transformation, Strategic Framework

© 2025 The Asian Academy of Business and social science research Ltd Pakistan.

INTRODUCTION

The practical implementation of public policy remains a persistent challenge in many developing countries, and South Africa is no exception. Despite robust policy frameworks in critical sectors such as healthcare, education, and public safety, the country struggles with transforming these frameworks into tangible outcomes (Fanie Cloete et al., 2018). According to Chilunjika et al. (2022), this implementation gap is often attributed to bureaucratic inefficiencies, poor interdepartmental coordination, and the limited capacity of governance structures. Compounding these institutional challenges are broader socioeconomic issues such as inequality, poverty, and unemployment, which further impede effective policy execution. In recent years, Artificial Intelligence (AI) has emerged as a transformative tool with the potential to address such governance challenges. Through technologies such as machine learning, automation, and predictive

analytics, AI offers promising solutions to improve administrative efficiency, enhance data-driven decision-making, and optimize the allocation of public resources (Brynjolfsson & McAfee, 2014). Governments across the globe, including those in Singapore, the United Kingdom, and Estonia, have begun integrating AI into public administration, reporting substantial improvements in service delivery and transparency (Dixon et al., n.d.). However, in South Africa, the integration of AI into governance is still in its nascent stages. While the potential is undeniable, several barriers hinder AI adoption. These include inadequate digital infrastructure, ethical concerns about data privacy and algorithmic bias, and a general lack of public trust in government-led technological initiatives (Zuiderwijk et al., 2021). Without addressing these concerns, AI's transformative potential may remain untapped or exacerbate existing inequalities.

This paper examines the viability and implications of incorporating AI into South Africa's implementation process. Using a qualitative approach that includes international case studies and South African policy document analysis, the study seeks to identify practical pathways for AI adoption that are contextually relevant and ethically grounded. Doing so contributes to the emerging literature on digital governance in the Global South. It offers a strategic framework to improve service delivery and institutional accountability in South Africa.

LITERATURE REVIEW

Integrating Artificial Intelligence (AI) into public policy represents a significant shift in contemporary governance paradigms. Scholars increasingly view AI not merely as a tool for administrative automation but as a decision-enhancing mechanism capable of reshaping the entire policy cycle. Yar et al. (2024) explore the transformative role of AI in public policy development, emphasizing how technologies such as machine learning and natural language processing (NLP) enhance agenda-setting, policy design, implementation, and evaluation. By improving policy processes' accuracy, responsiveness, and inclusiveness, AI tools allow governments to make data-driven decisions informed by real-time evidence, social feedback, and large-scale simulations.

Similarly, de Almeida et al. (2021) offer a comprehensive conceptual framework for AI governance, addressing the critical need for regulation that aligns with ethical principles such as fairness, transparency, and sustainability. Their Artificial Intelligence Regulation (AIR) framework, derived from a decade-long review of AI policy literature, provides a structured, stakeholder-aware model for developing country-specific regulations. The authors stress that the complexity and unpredictability of AI systems demand a dynamic regulatory approach that evolves in tandem with technological development. This aligns with the argument presented in the thesis that South Africa, given its bureaucratic challenges and implementation inefficiencies, requires adaptable AI governance models rooted in ethical reflection and responsive policymaking.

The literature reveals a broader trend toward data-driven governance, where AI facilitates the transition from traditional evidence-based policymaking to more dynamic, predictive, and participatory models. Yar et al. (2024) trace the evolution of this approach back to the early 2010s, highlighting how AI tools are now used globally to simulate policy scenarios, extract public sentiment from social media, and evaluate programmatic outcomes in sectors such as healthcare, climate change, and public

safety. Their analysis shows that predictive analytics and machine learning algorithms are increasingly employed to identify social problems early, propose effective interventions, and precisely track policy outcomes. Notably, NLP and text mining tools have enabled policymakers to uncover emerging concerns and trends from large datasets, bridging the gap between institutional priorities and public needs. Despite these advancements, Almeida et al. (2021) and Yar et al. (2024) point out significant challenges in implementing AI in governance. These include risks related to algorithmic bias, data privacy, opacity in decision-making, and the marginalization of vulnerable populations. Almeida et al. argue that regulatory models must be iterative, integrating both top-down and bottom-up mechanisms, and should include continuous stakeholder engagement. They advocate for agile, multi-layered governance structures that account for the full lifecycle of AI systems—from design and deployment to post-implementation auditing. Their proposed interactive governance models, such as the Regulatory-to-Technology (R2T) and Technology-to-Regulatory (T2R) processes, offer useful templates for aligning regulatory frameworks with technological innovation.

The ethical dimension of AI in policymaking also emerges as a central concern. Almeida et al. (2021) present multiple models for ethical governance, including those based on philosophical theories (e.g., rights-based, virtue ethics, utilitarianism), social contract approaches, and competency-based institutional arrangements. These models emphasize the importance of including citizens and affected communities in ethical deliberation and oversight. Rahwan's (2018) notion of "society-in-the-loop," cited in Almeida et al., proposes a participatory mechanism for ensuring that AI systems reflect societal values, not just technical or institutional priorities. This is particularly relevant in South Africa, where historical inequality and lack of digital trust pose significant barriers to inclusive AI adoption.

However, a detailed exploration of AI implementation in the Global South remains largely absent in the literature. While many regulatory models and ethical frameworks have been proposed in North American and European contexts, research is scarce on applying these frameworks to African governance structures. The thesis attempts to fill this gap by proposing a localized AI policy implementation model for South Africa that incorporates international best practices while accounting for the country's unique administrative, infrastructural, and social challenges. It advocates for pilot AI applications in key sectors like health and education, the development of ethical auditing protocols, and capacity-building for public officials. The existing literature supports the argument that AI is promising to transform public policy into a more efficient, responsive, and transparent system. However, its successful integration hinges on flexible, ethically grounded governance frameworks and inclusive public engagement. The South African context, as analyzed in the thesis, provides a crucial case for studying how such frameworks can be practically implemented in settings characterized by bureaucratic inertia, socioeconomic disparity, and digital divides.

METHODOLOGY

This study adopts a qualitative research methodology to explore the integration of Artificial Intelligence (AI) in public policy implementation within the South African context. A qualitative approach is most suitable for this research, as it allows for an in-depth

understanding of complex, context-dependent governance challenges and the socio-political dynamics that influence technology adoption (Hammarberg et al., 2016).

Case Study Approach

The study utilizes comparative case studies from countries that have successfully integrated AI into their governance systems, including Singapore, the United Kingdom, and Estonia. These nations provide valuable insights into the practical application of AI in public administration, particularly in areas such as urban mobility, healthcare resource planning, and administrative automation (West & Allen, 2021). These case studies aim not to generalize findings but to extract transferable lessons and best practices to inform AI adoption strategies suitable for South Africa's unique socioeconomic and institutional context.

Policy Document Analysis

To ensure contextual relevance, the study includes a detailed analysis of South African policy documents related to governance, digital transformation, and technology integration. This includes national frameworks, white papers, and strategic documents that outline the government's digital ambitions and limitations. This policy review helps ground the study in the realities of South African governance, considering its infrastructural challenges, resource constraints, and the digital divide (Fanie Cloete et al., 2014).

Triangulation

A triangulation method is employed to enhance the validity and reliability of the research findings. This involves cross-verifying data from multiple sources—international case studies, South African policy documents, and peer-reviewed literature. This multi-source approach minimizes bias, strengthens the credibility of the analysis, and allows for a holistic understanding of the potential and challenges of AI integration in public policy (Denzin, 2012). By combining global perspectives with local policy analysis, the methodology ensures that the recommendations are evidence-based and contextually appropriate for South Africa's governance landscape.

RESULTS AND DISCUSSION

This section presents a comprehensive analysis of the study's findings, contextualizing them within the challenges and opportunities of integrating Artificial Intelligence (AI) into South Africa's public policy implementation. Drawing from international case studies, local policy analysis, and academic literature, this section highlights how AI can improve efficiency, enhance decision-making, optimize resource allocation, and consider ethical and infrastructural challenges.

Efficiency Improvements in Public Administration

Bureaucratic inefficiency is one of the most persistent problems in South Africa's governance landscape. Administrative delays, cumbersome processes, and fragmented communication across departments often lead to poor service delivery, particularly in the health, education, and social security sectors (Brauns & Wallis, 2014). AI technologies have the potential to address these inefficiencies by automating repetitive tasks,

optimizing workflows, and reducing human error. AI has been successfully deployed in countries such as Singapore to streamline administrative functions. For instance, the Singaporean government employs AI-driven chatbots and automation tools to manage citizen queries and facilitate public service applications. This has significantly reduced processing times and improved user satisfaction (Eggers et al., 2017). Similarly, Estonia's e-governance system uses AI to automate nearly all administrative functions, from digital identity verification to tax collection.

In the South African context, agencies like the South African Social Security Agency (SASSA) stand to benefit significantly from AI integration. Currently plagued by delays and fraud, SASSA could utilize machine learning algorithms to detect anomalies in grant applications, thereby reducing fraud and ensuring timely delivery. Robotic process automation (RPA) could also handle repetitive administrative tasks, freeing up human resources for more strategic and interactive roles. Furthermore, AI can facilitate real-time interdepartmental data sharing, addressing one of the core issues in South African governance: the siloed nature of government departments. With AI-enabled data systems, departments can share insights on population data, service needs, and program impacts, leading to more coordinated policy implementation. The deployment of centralized AI dashboards could allow real-time monitoring of key performance indicators across various government initiatives, significantly improving operational transparency and responsiveness.

Enhanced Decision-Making through Real-Time Data Analytics

Traditional policy decision-making in South Africa often relies on outdated or incomplete data, leading to reactive rather than proactive governance. AI's capacity to analyze large volumes of structured and unstructured data in real time presents an opportunity to transform how decisions are made in the public sector. In urban planning, AI models have been used to simulate population growth, infrastructure demands, and environmental impact, enabling more informed long-term planning. For example, in the United Kingdom, local councils use AI to forecast housing demand and plan infrastructure projects accordingly (West & Allen, 2021). These models process multiple data streams, from demographics to real estate trends, and generate predictive insights that aid strategic resource deployment. South African municipalities could adopt similar models, particularly in rapidly urbanizing regions like Gauteng and KwaZulu-Natal. AI-driven urban simulations could inform decisions on transport networks, water supply systems, and housing schemes, ensuring that infrastructural development aligns with future demand.

In public health, AI has proven transformative. The UK's National Health Service (NHS) employs predictive models to anticipate disease outbreaks, manage hospital admissions, and allocate medical resources (West & Allen, 2021). With its communicable and non-communicable disease burden, South Africa could benefit immensely from such systems. AI applications could track epidemiological data, predict outbreaks, and guide the distribution of medical supplies, especially in under-resourced rural areas. In the education sector, AI could analyze learning outcomes across provinces, identify areas of underperformance, and suggest targeted interventions. This data-driven approach can help reduce educational inequality and ensure that resources reach the schools that need them most. Moreover, natural language processing (NLP) tools can enhance

citizen engagement by analyzing public sentiment from social media and feedback platforms. This can offer policymakers real-time insight into public opinion, allowing for responsive and inclusive governance.

Intelligent and Equitable Resource Allocation

Effective resource allocation is fundamental to public policy implementation. However, South Africa often struggles with mismatches between policy objectives and actual resource distribution, particularly in sectors like health, education, housing, and law enforcement (Fanie Cloete et al., 2018). AI can enable more precise and equitable resource allocation by identifying demand patterns and forecasting future needs. For example, predictive analytics can help the Department of Health allocate staff and medical equipment based on patient inflow data and regional disease burdens. In India, similar AI tools have been used to distribute COVID-19 vaccines more effectively, prioritizing high-risk populations and regions with poor healthcare access.

The integration of AI into public safety also offers promise. Predictive policing systems, which use historical crime data to forecast future crime hotspots, have been trialed in cities like Chicago. While such tools must be carefully managed to avoid racial or socioeconomic bias (Brayne, 2022), their potential for resource optimization is significant. In South Africa, where crime is a primary public concern, AI-powered models could help deploy law enforcement personnel more strategically and equitably. AI can assist in budgeting and resource planning by analyzing enrollment trends, teacher-student ratios, and infrastructure gaps in education. For instance, algorithms can determine where to build new schools, how to allocate teaching staff, or which areas require additional learning materials. Importantly, AI's role in resource allocation must be guided by ethical principles to prevent reinforcing existing inequalities. For example, algorithms trained on biased datasets could perpetuate systemic discrimination, particularly in marginalized communities. To mitigate this, South African policymakers must invest in ethical AI training, ensure diverse datasets, and create transparency mechanisms.

Infrastructure and Ethical Challenges

Despite the transformative potential of AI, South Africa faces significant challenges that must be addressed to ensure successful integration. These include infrastructure limitations, ethical concerns, and capacity deficits among public officials. Many parts of South Africa, predominantly rural and semi-urban, lack the digital infrastructure to support AI technologies. Munyoka and Maharaj (2019) state that gaps in internet connectivity, data storage, and cybersecurity remain significant barriers. To overcome this, the government must invest in foundational ICT infrastructure and public-private partnerships that facilitate AI readiness. Ethical concerns are another major challenge. AI systems often operate as "black boxes," where the rationale behind decisions is unclear, leading to accountability issues. Moreover, algorithmic bias, where AI systems reflect historical prejudices encoded in training data, can lead to unfair outcomes (Zuiderwijk et al., 2021). In a country with deep-rooted inequalities, this risk is particularly pronounced. Addressing these concerns requires clear ethical guidelines, accountability frameworks, and regulatory oversight. South Africa can take cues from the EU's General Data Protection Regulation (GDPR) and Singapore's Model AI Governance Framework, which emphasize data protection, fairness, and transparency. Furthermore, public trust in AI systems is

crucial. Transparency in decision-making processes, open data policies, and citizen engagement can build confidence and foster a culture of responsible AI use. The public must be educated about the benefits and risks of AI to ensure inclusive dialogue and participation. Finally, capacity building is essential. Government officials and civil servants must be trained in AI literacy to effectively understand, implement, and monitor AI systems. Without this human capital, even the most sophisticated AI tools will fail to deliver desired outcomes.

Summary of Key Insights

The study reveals that artificial intelligence (AI) holds substantial potential to enhance public policy implementation in South Africa by addressing long-standing governance challenges. AI can significantly improve operational efficiency through the automation of routine tasks, the streamlining of workflows, and the facilitation of better interdepartmental coordination. Furthermore, AI-powered analytics enable real-time decision-making by offering timely, data-driven insights that support responsive governance. Regarding service delivery, predictive models help identify demand gaps and promote the equitable allocation of public resources, ensuring that underserved communities receive appropriate attention. However, the responsible use of AI necessitates a strong ethical foundation, including transparency, fairness, and proactive efforts to mitigate algorithmic bias. The successful deployment of AI also relies heavily on the availability of digital infrastructure, public trust, and the development of skilled human capital. While AI is not a one-size-fits-all solution, it represents a transformative opportunity to reform governance in South Africa, provided that its integration is guided by strategic planning, inclusive design, and robust institutional support.

CONCLUSION AND RECOMMENDATIONS

This study explored the potential for Artificial Intelligence (AI) to improve the implementation of public policy in South Africa. Drawing upon qualitative research, international case studies, and analysis of domestic policy documents, it is evident that AI has significant potential to address longstanding challenges in governance. These include inefficiencies in administration, inadequate decision-making processes, and inequitable resource distribution. However, realizing this potential depends on overcoming ethical, infrastructural, and institutional challenges. This concluding section synthesizes key findings and provides strategic recommendations for integrating AI into South African public policy implementation.

CONCLUSION

Despite numerous well-crafted policy frameworks, South Africa struggles to translate policies into actionable and practical outcomes. This implementation gap undermines efforts in critical sectors such as healthcare, education, housing, and public safety. Bureaucratic red tape, limited interdepartmental coordination, outdated information systems, and socioeconomic disparities impede effective governance. Artificial Intelligence, with its ability to process large datasets, automate tasks, and generate predictive insights, offers transformative opportunities. International case studies, from Singapore's innovative traffic systems to the UK's AI-driven health resource planning, demonstrate how AI can enhance administrative efficiency and optimize service

delivery. While not directly transferable due to different contexts, these lessons offer valuable models that South Africa can adapt with contextual sensitivity. Key findings from this study reveal that AI can significantly streamline administrative operations, particularly by automating repetitive tasks, thus allowing human resources to focus on more strategic and high-value functions. AI systems can also facilitate real-time data-driven decision-making, which is essential for responding to rapidly evolving socioeconomic conditions. Furthermore, predictive analytics can enhance resource allocation by identifying demand patterns, which is especially beneficial in resource-scarce settings.

Nonetheless, the integration of AI is not without challenges. Ethical concerns regarding data privacy, algorithmic bias, and the opacity of AI decision-making processes must be addressed. In addition, infrastructural deficiencies, particularly in rural areas, limit the reach and impact of AI solutions. Public officials and civil servants also have a significant skills gap, which hinders effective AI implementation and monitoring. Therefore, AI presents a powerful opportunity to reform public policy implementation in South Africa; its integration must be pursued thoughtfully, inclusively, and strategically. It must be supported by investment in digital infrastructure, strong ethical and legal frameworks, public trust-building measures, and targeted capacity-building efforts.

RECOMMENDATIONS

Based on the analysis conducted in this study, the following recommendations are proposed to guide the effective integration of AI into South African public policy implementation:

Initiate Pilot Projects in Key Sectors

Pilot programs offer a controlled environment to test and evaluate the potential of AI in public governance. Healthcare and education are ideal starting points due to their significant resource needs and high public impact. For example, AI can forecast patient inflows, monitor disease outbreaks, and manage supply chains in the healthcare sector. AI can help identify learning disparities and optimize resource allocation to underperforming schools in education. Pilot projects should include clear objectives, measurable outcomes, and stakeholder feedback mechanisms. Successful models can then be scaled up gradually, allowing time to adjust based on lessons learned.

Invest in AI-Ready Infrastructure

Implementing AI requires foundational digital infrastructure, including broadband internet access, secure data storage, and interoperable digital platforms. Many parts of South Africa, particularly rural areas, lack these prerequisites. The government should collaborate with the private sector to extend connectivity and build the necessary technological foundations for AI. Additionally, data quality and availability are critical. Government departments must digitize records, standardize data collection practices, and ensure data systems are accessible and compatible across agencies. This will support the real-time analytics needed for AI systems to function effectively.

Develop Ethical and Regulatory Frameworks

To mitigate the risks associated with AI, including bias, discrimination, and lack of transparency, South Africa must establish comprehensive ethical guidelines and

regulatory frameworks. These frameworks should be aligned with international best practices, such as the EU's GDPR and Singapore's Model AI Governance Framework. A dedicated regulatory body or oversight committee should be established to audit AI systems used in public policy, ensuring that decisions are transparent, justifiable, and subject to appeal. Citizen data must be protected through strong privacy laws and data governance standards. Further, public participation should also be embedded in developing AI policies to ensure inclusiveness and accountability. Engaging civil society and academic institutions will help foster a transparent, participatory approach to AI governance.

Enhance Public Sector Capacity and AI Literacy

AI integration will not succeed without the necessary human capital. Public servants and decision-makers must have the skills and knowledge to work with AI systems. This includes technical training and education on AI's ethical, social, and legal dimensions.

Capacity-building initiatives should be institutionalized through government training academies, partnerships with universities, and collaborations with tech companies. Courses should cover AI fundamentals, data analytics, digital ethics, and project management. Special attention should be given to inclusiveness in training. Marginalized groups should be allowed to participate in AI education programs to ensure equitable access to the digital economy.

Promoting Public Trust and Transparency

AI systems must be transparent and understandable to foster public trust. This involves explaining AI decision-making processes, documenting algorithmic design, and ensuring that systems can be audited. Governments must proactively communicate AI technologies' purpose, benefits, and limitations to the public. Mechanisms for feedback and redress should be readily accessible. This transparency will help reduce public fear, build trust, and improve AI adoption. Furthermore, government communication strategies should promote digital literacy among citizens. Awareness campaigns can inform the public about their rights in the digital space and how AI is being used in public governance.

Foster Public-Private Partnerships (PPPs)

Public-private partnerships are essential given the scale of investment and expertise required for AI implementation. These collaborations can support infrastructure development, technology transfer, capacity-building, and innovation. The private sector, including tech startups and multinational companies, can contribute tools, platforms, and expertise. Meanwhile, the government can ensure alignment with national development goals, regulatory compliance, and equitable access. Partnership models must be governed by clear agreements prioritizing public interest, data protection, and accountability. Transparency in procurement and partnership selection is crucial to prevent corruption and ensure value for money.

Monitor, Evaluate, and Adapt AI Integration Strategies

AI integration should be treated as an evolving process. Continuous monitoring and evaluation are essential to assess outcomes, identify challenges, and refine strategies. A

national framework for monitoring AI in governance should include performance indicators, feedback loops, and impact assessments. This will help ensure that AI systems meet their intended goals and adapt to new challenges. Periodic reviews should be conducted with the government, academia, civil society, and the private sector's input. This inclusive approach will enhance policy responsiveness and maintain momentum in AI adoption.

Final Reflection

Artificial Intelligence is not a cure-all for the governance challenges faced by South Africa. However, if used wisely, it is a powerful tool supporting more effective, inclusive, and responsive public administration. The key lies in adopting a strategic, ethical, and context-sensitive approach that prioritizes the public good. This study contributes to the growing literature on digital governance in the Global South and provides a roadmap for policymakers seeking to leverage AI for sustainable development. As South Africa looks to the future, embracing technological innovation with a strong moral compass will be essential for building a governance system that is not only efficient but also just and equitable.

DECLARATIONS

Acknowledgement: We appreciate the generous support from all the contributor of research and their different affiliations.

Funding: No funding body in the public, private, or nonprofit sectors provided a particular grant for this research.

Availability of data and material: In the approach, the data sources for the variables are stated.

Authors' contributions: Each author participated equally to the creation of this work.

Conflicts of Interests: The authors declare no conflict of interest.

Consent to Participate: Yes

Consent for publication and Ethical approval: Because this study does not include human or animal data, ethical approval is not required for publication. All authors have given their consent.

REFERENCES

Brauns, M., & Wallis, M. (2014). Policy Implementation and The Promotion of Service Delivery Within The Public Health Sector In South Africa. International Business & Economics Research Journal (IBER), 13(2), 201. <https://doi.org/10.19030/iber.v13i2.8436>

Brayne, S. (2022). The Banality of Surveillance. *Surveillance & Society*, 20(4), 372-378 <https://doi.org/10.24908/ss.v20i4.15946>

Brynjolfsson, E., & McAfee, A. (2014). The Second Machine Age: Work, Progress, and Prosperity in a Time of Brilliant Technologies. In Google Books. W. W. Norton & Company. <https://books.google.com/books?hl=en&lr=&id=WiKwAgAAQBAJ&oi=fnd&pg=PA1&dq=The+Second+Machine+Age:+Work>

Chilunjika, A., Intauno, K., & Chilunjika, S. R. (2022). Artificial intelligence and the public sector Human resource management in South Africa: Opportunities, challenges and prospects. *SA Journal of Human Resource Management*, 20(12). <https://doi.org/10.4102/sajhrm.v20i0.1972>

de Almeida, P. G. R., dos Santos, C. D., & Farias, J. S. (2021). Artificial Intelligence Regulation: A Framework for Governance. *Ethics and Information Technology*, 23(3), 505-525. <https://doi.org/10.1007/s10676-021-09593-z>

Integrating Artificial Intelligence in South Africa's Public Policy **Makhura, N. K, et.al., (2025)**

Denzin, N. K. (2012). Triangulation 2.0. *Journal of Mixed Methods Research*, 6(2), 80–88. <https://doi.org/10.1177/1558689812437186>

Dixon, S., Irshad, H., Pankratz, D., & Bornstein, J. (n.d.). Where should cities go tomorrow? The Deloitte City Mobility Index: Gauging global readiness for the future of mobility. Retrieved April 12, 2025, from https://www.planinfo.dk/Media/637913106242245752/the_deloitte_city_mobility_index.pdf

European Union. (2018). General Data Protection Regulation (GDPR). General Data Protection Regulation (GDPR). <https://gdpr-info.eu/>

Fanie Cloete, C De Coning, Wissink, H., & Rabie, B. (2018). Improving public policy for good Governance. Van Schaik Publishers.

Fanie Cloete, Rabie, B., & C De Coning. (2014). Evaluation management in South Africa and Africa. Sun Media.

Hammarberg, K., Kirkman, M., & De Lacey, S. (2016). Qualitative research methods: When to Use them and how to judge them. *Human Reproduction*, 31(3), 498–501. <https://academic.oup.com/humrep/article/31/3/498/2384737>

International Conference on Future Technologies for Smart Society (ICFTSS), 188–193. <https://doi.org/10.1109/icftss61109.2024.10690269>

Munyoka, W., & Maharaj, M. S. (2019). Privacy, security, trust, risk, and optimism bias in e-government use: The case of two Southern African Development Community countries. *SA Journal of Information Management*, 21(1). <https://doi.org/10.4102/sajim.v21i1.983>

NHS (2024). NHS. NHS; nhs. <https://www.nhs.uk/>

Rahwan, I. (2018). Society-in-the-loop: programming the algorithmic social contract. *Ethics and Information Technology*, 20(1), 5–14. <https://doi.org/10.1007/s10676-017-9430-8>

South African Social Security Agency (SASSA) | South African Government. (n.d.). [Www.gov.za](https://www.gov.za/about-government/contact-directory/soe/south-african-social-security-agency-sassa). <https://www.gov.za/about-government/contact-directory/soe/south-african-social-security-agency-sassa>

UiPath Inc. (n.d.). What is Robotic Process Automation? Uipath.com. <https://www.uipath.com/rpa/robotic-process-automation>

West, D. M., & Allen, J. R. (2021). Turning Point. Brookings Institution Press

Yar, M. A., Goh, H. G., Adnan, K., Gan, M. L., & Ponnusamy, V. (2024). Bridging Cybersecurity Education and Industry Demands: Mapping and Prioritizing Curriculum Guidelines. 2024

Zuiderwijk, A., Chen, Y.-C., & Salem, F. (2021). Implications of the Use of Artificial Intelligence In public governance: a Systematic Literature Review and a Research Agenda. *Government Information Quarterly*, 38(3), 101577. ScienceDirect. <https://doi.org/10.1016/j.giq.2021.101577>

2025 by the authors; The Asian Academy of Business and social science research Ltd Pakistan. This is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (<http://creativecommons.org/licenses/by/4.0/>).