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The emergence of quantum computing poses a critical threat to 

classical cryptographic mechanisms, particularly within resource-

constrained mobile platforms. This paper presents a novel artificial 

intelligence-based framework for the dynamic and context-aware 

selection of post-quantum cryptographic (PQC) algorithms, aimed at 

enhancing mobile application security against quantum adversaries. 

The proposed system, termed Reinforcement Learning-based Adaptive 

PQC Selector (RLA-PQCS), integrates a Q-learning agent with a model-

agnostic meta-learning (MAML) architecture to enable real-time 

algorithm selection based on varying operational conditions such as 

device load, battery status, network latency, threat level and data 

sensitivity. RLA-PQCS operates within a Markov Decision Process (MDP), 

where system states represent contextual mobile parameters and 

actions correspond to selecting PQC algorithms from a predefined 

candidate set comprising Kyber, Dilithium, Falcon and SPHINCS+. A 

multi-objective reward function is formulated to jointly optimize 

cryptographic strength (measured in security bits), energy efficiency, 

execution latency and algorithmic robustness against quantum 

attacks. The meta-learning module enhances the system's adaptability 

to previously unseen configurations enabling few-shot learning on new 

devices and threat profiles. Training and validation are conducted on 

a hybrid dataset combining real-world telemetry from Android-based 

environments and synthetically generated threat scenarios. 

Experimental results demonstrate that the proposed framework 

achieves up to 38% improvement in energy efficiency, 27% reduction in 

cryptographic execution latency and enhanced security adaptability 

compared to static PQC assignment approaches. Furthermore, the 

system aligns with the NIST post-quantum cryptography standardization 

framework and supports forward secrecy under dynamic threat 

landscapes. The proposed RLA-PQCS framework contributes a deep, 

lightweight and AI-driven mechanism for embedding quantum-resilient 

cryptographic agility into mobile applications, establishing a 

foundation for secure communication in the post-quantum era. 

 

 

Abdul Karim Sajid Ali*, Aamir Raza & 

Haroon Arif are currently affiliated with 

the Illinois Institute of Technology, 

Chicago, USA.  

Email: aali62@hawk.iit.edu 

Email: araza7@hawk.iit.edu 

Email: harif@hawk.iit.edu 

 

Ali Abbas Hussain is currently affiliated 

with the The University of Texas at Dallas, 

USA.  

Email: 

aliabbas.graduateschool@gmail.com 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Corresponding Author* 

Keywords: Post-Quantum Cryptography, Mobile Security, Machine Learning, Reinforcement Learning, Cryptographic 

Agility, Meta-Learning, AI in Cybersecurity 
                                                                                                        © 2025 The Asian Academy of Business and social science research Ltd Pakistan.  

INTRODUCTION 

The rapid advancement of quantum computing has introduced profound 

implications for global cybersecurity infrastructure. Algorithms such as Shor’s and 

Grover’s demonstrate the potential to undermine widely deployed cryptographic 

systems, especially RSA, Elliptic Curve Cryptography (ECC), and DSA, which form the 

foundation of secure communications, authentication and data integrity across 

digital platforms [1]. As quantum hardware matures even low-powered quantum 

adversaries could decrypt encrypted data retrospectively or launch real-time man-

in-the-middle attacks with impunity rendering classical asymmetric cryptography 

obsolete. In anticipation of this threat Post-Quantum Cryptography (PQC) has 

emerged as a pivotal research frontier. PQC algorithms, including lattice-based 
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(Kyber, Dilithium), hash-based (SPHINCS+), code-based (Classic McEliece) and 

multivariate-based schemes (Rainbow, GeMSS) are designed to resist known 

quantum algorithms. However, while their theoretical robustness is promising practical 

deployment particularly in resource-constrained environments like mobile devices 

remains highly challenging [2]. These challenges stem from increased key sizes, 

computational overhead, memory consumption and transmission latency, all of 

which can negatively impact performance and user experience. Mobile devices, 

being ubiquitous and integral to modern digital ecosystems, are particularly 

vulnerable due to their hardware limitations, network volatility, energy sensitivity, and 

exposure to diverse threat landscapes. Consequently, statically integrating a single 

PQC algorithm into mobile applications can lead to inefficiencies or outright failures 

under real-world conditions. This raises a critical need for adaptive context-aware 

cryptographic systems that can intelligently choose the most appropriate algorithm 

in real time, optimizing both security guarantees and device performance [3]. 

SIGNIFICANCE OF THE STUDY 

In order to address the particular requirements of post-quantum cryptographic 

deployment in the mobile environment, in this paper we present an AI-based 

dynamically adaptive PQC selection framework. The techniques harness recent 

developments in reinforcement learning (RL) and meta-learning to facilitate 

cryptographic agility specific to the operational health of the mobile device and the 

external adversary model it is exposed to. Unlike standard static combinations, our 

system marries machine intelligence and selection of a cryptographic protocol 

enabling it to adapt to changes in runtime conditions such as processor load, battery 

level, available bandwidth and perceived risk. This is not only unprecedented but 

essential for systems that work on the move in hostile or random environments to 

maintain secure and optimized operation through time adaptation. 

The primary objective of this study is to design, implement and evaluate a 

Reinforcement Learning-based Adaptive Post-Quantum Cryptographic Selector 

(RLA-PQCS). The system dynamically selects the optimal post-quantum cryptographic 

algorithm from a pre-approved set (e.g., Kyber, Falcon, SPHINCS) based on real-time 

device and threat context. The system aims to achieve the following:  

Context-aware cryptographic adaptability on mobile platforms. 

Efficient integration of RL and meta-learning techniques to improve generalization 

across diverse operating conditions. 

Quantitative improvements in latency, energy consumption and cryptographic 

strength when compared to static implementations. 

This paper offers the following technical and scientific contributions: 

RLA-PQCS Framework: We present a novel RL-based decision engine that dynamically 

selects PQC algorithms based on device context, including CPU usage, memory 

availability, network conditions, and threat levels. 

Markov Decision Process (MDP) Modeling: The PQC selection task is formulated as an 

MDP, where each action represents an algorithm choice, and each state 

encapsulates operational context features. The reward function balances security 

level, latency, and power consumption.  
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Meta-Learning Enhancement: To address context variance and task heterogeneity, 

we incorporate Model-Agnostic Meta-Learning (MAML), which allows the RL agent to 

quickly adapt to new device profiles or application domains with minimal retraining. 

Empirical Validation: Through rigorous experimentation on real Android-based 

devices and simulated mobile environments, we demonstrate that RLA-PQCS 

achieves up to 38% better energy efficiency, 27% lower execution latency, and higher 

adaptability compared to static selection models all while maintaining compliance 

with NIST PQC standards. 

BACKGROUND AND RELATED WORK 

A. The Post Quantum Cryptography (PQC) 

Post-Quantum Cryptography (PQC) seeks to build cryptographic algorithms which 

are secure against attackers in a world with both classical and quantum computers. 

The main driving force is that Shor’s algorithm can factorize large numbers and solve 

discrete logarithms in polynomial time, which makes RSA, ECC and DSA insecure in 

the quantum world [4]. To overcome this, the National Institute of Standards and 

Technology (NIST) started a standardization project to select secure and efficient PQC 

schemes. At the third round of NIST’s PQC competition there are a number of 

algorithms leading the field: 

Kyber (Lattice-based) Picked for key encapsulation. Provides good security with 

less computational and communication cost. 

Dilithium (Lattice-based): Chose for digital signatures. It is provably secure and also 

features high performance and small public key sizes due to its ability to prevent 

lattice attacks. 

Falcon (Lattice-based): For smaller signatures than Dilithium but it’s also more 

complex to implement and depends on floating point which EEs usually don’t have. 

SPHINCS+ (Hash-based): Stateful and quantum-secure signature construction with 

a conservative security level that however has large signature sizes. 

Classic McEliece (Code-based): It offers fast encryption and decryption, but the 

public key size is too large for constrained devices. 

These algorithms are different from each other in terms of computing cost, memory 

requirement, key/signature size and implementation [5]. Therefore, static deployment 

is not an efficient deployment policy for mobile settings that have a variable and 

constrained resource. 

B. Cryptographic Agility in Mobile Systems: 

Cryptographic agility refers to the system's capability to switch between 

cryptographic algorithms dynamically based on contextual requirements, such as 

device performance, energy constraints, or emerging threat profiles [6]. In mobile 

ecosystems cryptographic agility is especially critical due to the variability of: 

• Battery levels 

• Processing power 

• Signal strength and bandwidth 

• Runtime application demands 
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However, current mobile security architectures often implement fixed cryptographic 

protocols hardcoded at design time limiting their ability to adapt to runtime 

constraints. Moreover, most mobile operating systems lack APIs that support context-

driven cryptographic configuration. This static approach is inadequate when 

integrating PQC algorithms, whose computational costs and memory footprints vary 

significantly and may negatively impact mobile application performance or security 

posture under different conditions. 

C. AI in Security Protocol Selection 

Artificial Intelligence (AI), particularly machine learning (ML) and reinforcement 

learning (RL) has been widely explored in the domain of adaptive security 

mechanisms. ML algorithms have been employed for intrusion detection, anomaly 

detection, malware classification and threat intelligence extraction [7]. These 

approaches often rely on supervised and unsupervised learning to identify patterns of 

compromise or risk. In cryptographic systems, RL has been leveraged to learn 

adaptive encryption strategies, particularly in network security contexts (e.g., 

adaptive VPN tunneling, secure routing protocols). For instance, Q-learning and Deep 

Q-Networks (DQNs) have demonstrated success in selecting secure communication 

paths based on attack exposure and network metrics. However, the application of RL 

for cryptographic algorithm selection especially in the context of PQC on mobile 

platforms remains an under-explored research area. Existing works often focus on 

optimizing throughput or latency in security protocols rather than contextual algorithm 

selection based on device state and adversarial threat levels [8]. 

D. Context-Aware Computing for Mobile Devices 

Context-aware computing enables systems to sense and react to environmental 

stimuli, making decisions based on user location, device status, sensor input and 

behavioral patterns. In mobile computing, this paradigm is well-established in fields 

such as ubiquitous computing, smart health and location-aware services. Context-

aware security models, in particular, have been proposed to enforce dynamic access 

control, adaptive authentication and risk-based encryption. Parameters such as GPS 

location, CPU usage, screen state and user activity have been used to inform security 

policy adjustments in real-time. Despite these advances, context-aware 

cryptographic selection frameworks especially for post-quantum algorithms are still 

lacking. Most current systems rely on static cryptographic suites and do not exploit the 

rich contextual data available from mobile devices to enhance cryptographic 

decision-making[9]. 

PROPOSED METHODOLOGY 

A. Overview of RLA-PQCS Framework 

The Reinforcement Learning-based Adaptive Post-Quantum Cryptographic Selector 

(RLA-PQCS) is a proactive AI-driven decision framework that dynamically selects the 

most appropriate post-quantum cryptographic (PQC) algorithm for securing mobile 

communications, particularly under fluctuating resource constraints and evolving 

threat landscapes. 

The architecture comprises five key components: 
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• Context-Aware Telemetry Interface: Continuously monitors runtime metrics 

such as CPU utilization, battery level, memory availability, communication latency, 

data sensitivity classification and threat probability index [10]. 

• Reinforcement Learning Agent: Trained to maximize cumulative utility by 

learning optimal cryptographic policies under constrained environments. 

• Meta-Learning Layer (MAML): Augments learning generalization by allowing 

the agent to rapidly fine-tune itself to unseen contexts with minimal retraining. 

• PQC Algorithm Repository: Comprises vetted NIST PQC finalists and alternates, 

representing lattice-, hash and code-based cryptographic primitives. 

• Utility-Based Decision Engine: Executes inference by integrating learned 

policies, real-time state vectors, and a constrained utility optimization function. This 

modularized architecture ensures robust adaptability and performance across 

heterogeneous mobile environments [11]. 

This architecture ensures dynamic flexibility and performance across heterogeneous 

mobile environments. 

B. Problem formulation 

We formulate the adaptive selection problem as a Markov Decision Process (MDP): 

     M=(S,A,R,P,γ) 

Where 

S: Discrete and continuous hybrid state space defined by telemetry data 

A: Finite action space of PQC algorithm choices 

R(s,a): Reward function balancing security, latency and energy 

P(s′∣s,a): Transition function denoting probability of next state 

γ∈[0,1]: Temporal discount factor to prioritize long-term gains 

C. Reinforcement learning modules 

Q-Learning Algorithm 

We employ a model-free Q-learning strategy, iteratively approximating the optimal 

action-value function[13]. 

𝑄∗(𝑠,𝑎) using the Bellman update rule: 

Q(st,at ) ← Q(st,at )+ α[rt + γ maxQ(st+1,a’)-Q(st-at)] 

State Vector 𝑠 is constructed from normalized and scaled context parameters: 

 

Action Space A includes a pre-selected set of PQC algorithms: 

A ={Kyber768,Dilithium,Falcon,SPHINCS+,Classic McEliece} 

Reward Function 𝑅(𝑠,𝑎) is a weighted composite of security, energy and performance: 

 

Where: 
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𝑆(a): Security metric (bits of resistance) 

Ɛ(a,s): Energy consumption based on context 

T(a,s): Execution and handshake latency 

w1 ,w2 ,w3: Priority-adjustable coefficients 

D. Meta Learning (MAML) Integration 

To ensure rapid adaptability to new environments, we integrate Model-Agnostic 

Meta-Learning (MAML), which enables the RL agent to generalize across multiple 

device profiles and context distributions[14]. 

Training Procedure: 

Meta-Training Set {𝑇𝑖}: Each task 𝑇𝑖 is a mobile configuration and threat model. 

Inner Loop: Perform task-specific Q-learning updates: 

θi′ =θ−α∇ LTi (Qθ ) 

Outer Loop: Meta-update using aggregated losses across sampled tasks: 

θ←θ−β∇θ∑ LTi (Qθi′) 

E. Decision Making Workflow 

The selection process is implemented as follows: 

Context Sampling: Capture device metrics and threat scores. 

State Vector Encoding: Normalize inputs into bounded feature space. 

Q-Value Computation: Use the trained Q-network to evaluate all 𝑎∈𝐴 

Policy Execution: Select algorithm 𝑎∗=argmax 𝑄(𝑠,𝑎) 

Meta-Update Trigger: Invoke MAML update if distributional drift is detected via KL 

divergence monitoring 

Telemetry → Encoder → Q-Network → Decision → PQC Deployment [15]. 

F. PQC Algorithm: 

S.No Algorithm Type Key Size Signature/Ciphertext 

Size 

Security Level Remark

s 

1.  Kyber768 Lattice 

(KEM) 

1,184 

bytes 

1,088 bytes 128-bit Efficien

t and 

compa

ct 

2.  Dilithium II Lattice 

(Signature) 

1,312 

bytes 

2,420 bytes 128-bit Fast 

signing 

3.  Falcon Lattice 

(Signature) 

897 bytes 666 bytes 128-bit Small 

output, 

fragile 

ops 

4.  SPHINCS+ 

(SHA-256) 

Hash-based 32 bytes 7,856 bytes 128-bit Stateles

s, 

conserv

ative 
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5.  Classic 

McEliece 

Code-based 

(KEM) 

261,120 

bytes 

128 bytes 128-bit Fast 

decaps

ulation 

G. Mathematical Model 

The objective is structured as a constrained optimization of the utility function. 

Utility Function: 

U(s,a)=λ1⋅S(a)+λ2 ⋅A(a,s)+λ3 ⋅Rq (a) 

Where: 

S(a): Cryptographic strength 

A(a,s): Adaptability based on context fit 

Rq (a): Resistance to quantum attack models 

𝜆𝑖 : Adjustable weight parameters 

Subject to Constraints: 

 

 

 

4. EXPERIMENTAL SETUP 

To thoroughly test the RLA-PQCS framework, we adopt a dual platform approach 

using a combination of a virtual and a physical environment: 

Android Emulators: Using platforms like Browser Stack, we also test to replicate myriad 

device configurations and operating scenarios as accurately as possible. This control 

environment makes it possible to prototype quickly and scale. "But it is accepted the 

emulators might not pick up on on all of the little bits of hardware, notably in the 

energy spent and real-latency [17]. 

Real Devices: Real device testing on Android devices is a must-have to get real-world 

performance data like battery consumption, CPU load, and network. This validation 

refers to the reliability of the framework applied in actual operation circumstances. 

This dual methodology provides comprehensive scrutiny of the RLA-PQCS framework 

in both simulation scenarios and practical cases. 

A. Datasets: 

Evaluation It uses a mix of real telemetry data and well-known threat datasets to train 

and test the RLA-PQCS model: 

(1). Real Telemetry Data: It is collected by devices in the field and is composed of 

statistics like CPU consumption, battery, network latency and other device or 

application-specific behaviors. It forms the reality upon which we shall model device 

state and operational context [18]. 

(2). Synthetic Adversarial Ecosystems: To model a broad range of threats, we 

include two large datasets: 
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(3). CICIOT2023: This sample consists of 33 unique attack types belonging to seven 

categories (DDoS, DoS, Reconnaissance, Web-based, Brute Force, Spoofing and 

Mirai) imposed on 948 sensor entities attached to 105 IoT devices through CAN 

messages and generated by the Canadian Institute for Cybersecurity. It is a good 

input dataset for training and evaluating intrusion detection systems on malicious 

patterns of the traffic. (arXiv)[19]. 

(4). ToN IOT: This dataset was collated by the University of New South Wales and 

contains telemetry data for IOT services, Windows and Linux operating system logs, 

along with network traffic. It has multiple types of attacks-Password attacks, help files 

attack, web shells, largescale, ransomware, DDoS,MI TM, backdoor, and attacks 

based on different services, can satisfy the need for offensive and defense 

technology practice of the people from different levels. Through this data fusion, we 

ensure that the RLA-PQCS framework is trained and tested with a wide variety of 

operational and adversarial settings. 

B. Simulation Parameters: 

To fully evaluate the flexibility and efficiency of the RLA-PQCS framework, we set up a 

number of simulation parameters: 

(1). Device Load: Approximated by CPU load (20%, 50% and 80%) to simulate 

various workloads and types of stress. 

(2). Battery Profiles: experiment with different battery charge levels (100%, 50%, 

20%) to assess the effectiveness of energy management and algorithm selection 

given the battery power limitations. 

(3). Network Conditions: To measure the responsiveness s and the adaptability of 

the framework, we simulated various network latencies and bandwidths. 

(4). Threat Types: To evaluate the security readiness and flexibility when exposed to 

the diverse cyber-attack scenarios such as encountered in CICIoT2023 and ToN IoT 

datasets, where to calculates the/performs attack level score, keeping trustworthiness 

score in terms of cyber threat level which will be used as a input to the processor that 

takes care of to choose the right crypto algorithms for the purpose of a secure 

communication These factors are expanded in a systematic manner for simulating 

practical situations to test the decision-making behavior of the RLA-PQCS framework 

[20]. 

C.  Evaluation Criteria: 

The RLA-PQCS performance is assessed in terms of: 

Power Usage: In mAh, this attribute provides details about the consumption of power 

for several cryptographic algorithms at various operational scenarios. 

Latency: Calculated by observing the runtime of cryptographic benchmarks which 

gives insights into how the framework effects application responsiveness. 

Security Level: The resistance of the cryptographic algorithm against known attacks, 

measured in bits (e.g., 128-bit security level). 

Model Accuracy: Defined to measure how well the framework decides the most 

appropriate cryptographic algorithm based on changing device states and threats 

and is quantified by typical classification metrics (precision, recall, and) F1-score [21]. 
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These performance and security evaluation aspects offer a complete view of the 

effectiveness of the RLA-PQCS framework in the balance of security requirements 

against performance limitations in mobile environments. 

RESULTS & DISCUSSION 

The RLA-PQCS exhibits those advantages over the basic static and random PQC 

selection mechanisms. Combining reinforcement learning with MAML, the proposed 

method can adapt to diverse mobile contexts online and is conditioned on energy-

efficient, latency-efficient and selection-accurate norms. When comparing with the 

static selection, RLA-PQCS can save the energy per operation by 32% and 37.5% for 

the latency, but also increase the correctness rate by 59.4%. Adding MAML allows for 

more adaptable policies, reducing the adaptation time by 46.2% compared to raw 

RL agents [22]. These improvements are statistically significant; in all cases, p < 0.01. 

The extensive evaluation highlights effectiveness of RLA-PQCS in the real time, 

resource limited environment of mobile platforms and presents it as a strong 

candidate for PQ crypto-algorithm selection [23]. 

Table 5.1 

S.No Model Energy 

Efficiency<br>(Joules/O

peration) 

Latency<br>(

ms) 

Selection 

Accuracy<br>(%) 

Adaptati

on 

Time<b 

1.  Static PQC 1.25 15.2 33.3 N/A 

2.  Random 

Selection 

1.10 13.8 20.0 N/A 

3.  RLA-PQCS 

(Standard 

RL) 

0.95 11.0 78.4 5.2 

4.  RLA-PQCS 

(with MAML) 

0.85 9.5 92.7 2.8 

 

 

 

 

 

 

 

 

 

Figure 1. 

The radar chart offers a comprehensive visualization of the comparative performance 

of various PQC selection models across key metrics: energy efficiency, latency, 

selection accuracy and adaptation time. Particularly, the RLA-PQCS model 

enhanced with MAML exhibits superior performance across all evaluated dimensions, 

underscoring its adaptability and efficiency in dynamic mobile environments [24]. 
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DISCUSSION 

The performance of the RLA-PQCS, particularly with MAML, appreciably outperforms 

classical static and random PQC selection. The system achieves 32% and 37.5% 

reduction in energy consumption and latency as compared to static selection, 

respectively and offers 59.4% higher accuracy in selection [25]. These enhancements 

illustrate the framework's capacity to trade-off security and performance in dynamic 

mobile network. Moreover, the use of MAML allows it to quickly adapt to new device 

contexts and threat profiles achieving a reduction of 46.2% on adaptation time 

compared to baseline reinforcement learning methods. This flexibility is important for 

maintaining strong security in the presence of new threats and fluctuating device 

states. The statistical significance of these results (p < 0.01) attests to the trustworthiness 

of the improvements made by the framework. From the development point of view, 

the RLA-PQCS model offers a technically sound and logically consistent approach to 

solve the dynamic selection of variable post quantum cryptographic algorithms in 

mobile applications [26]. 

CONCLUSION AND FUTURE WORK 

The RLA-PQCS framework as an RL-based Adaptive Post-Quantum Cryptographic 

Selector (RLA-PQCS) with reinforcement learning and Model-Agnostic Meta-Learning 

(MAML) has made a breakthrough in the dynamic post-quantum cryptographic 

algorithm selection for mobile applications. Our empirical studies show significant 

gains over Random and Static selection, including 32% reduction in energy, 37.5% 

decrease in latency and a 59.4% improvement in selection precision. The addition of 

MAML decreases adaptation time by 46.2% compared to traditional reinforcement 

learning methods revealing the robustness of the framework across diverse device 

environments and threat scenarios. These results validate the effectiveness of the 

framework to trade off between security and performance in the mobile dynamic 

environments. 

Research directions include enlarging the set of PQC algorithms to include future 

standards to increase adaptability and robustness of the framework. Effort should be 

made to incorporate RLA-PQCS into hybrid cryptography systems which is a 

hybridization of classical and quantum-resistant encryption algorithm, so that the 

transition to post-quantum cryptography can be more gradual. Another relevant 

direction is to tune the framework to better fit deployment on resource-limited 

contexts, including Internet of Things (IoT) devices. RLA-PQCS will be tested and 

implemented in real-world various mobile applications, and this experience will 

enable us to evaluate the practical performance and security of it. Finally, enriching 

the framework's support for continuous learning and adaptation will support the long-

term robustness of the system against changing threats and device states. These 

future works are also intended to mature RLA-PQCS into a strong, efficient and flexible 

solution for the selection of post-quantum cryptographic algorithms on mobile 

devices. 
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