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Air quality prediction is increasingly vital to environmental health,
particularly for urban and rural regions, where dangerous
particulate matter hazards often exist. This study presents a novel
methodology for estimating PM2.5 concentrations using a
fransformer model with country-level embedding and explainable
Al (XAl). The proposed approach is superior to conventional
machine learning and deep learning techniques as it provides high
accuracy and is interpretable and applicable to various
geographic regions. Given the country-specific embeddings, the
fransformer architecture models the replacements caused by time
and location variations in pollutants' concentrations, consequently
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allowing accurate predictions even for regions having sparse data.
Furthermore, SHAP and LIME elucidate the model's tendency to
predict, providing policymakers with valuable insights. Overall, the
proposed architecture presents a stronger predictive power than
other forecasting models, with an R-squared value of 0.98 and a
mean absolute error of 0.011. Also, using country embedding has
helped improve accuracy and the ability to apply to different
regions. Hence, this research offers a plausible framework to
forecast air pollution and evidence-based government
policymaking and planning about air pollution and its health and
environmental effects.
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INTRODUCTION

Forecasting the concentration of fine Particulate Matter (PM) of diameter less than
2.5 um commonly produced from combustion, industrial emissions, and secondary
atmospheric reactions has become indispensable for environmental management,
connecting scientific advances with policy interventions to protect ecosystems and
human health (Inam, Igbal, et al. 2024; Inam, Khan, et al. 2025; Rahujo et al. 2025).
Once airborne, these particles fravel long distances and deposit heavy metals and
organic contaminants onto soil and water bodies. Accumulation of PM2.5-bound
toxins in soil alters pH and nutrient availability, disrupting microbial communities and
inhibiting plant growth. Similarly, in aquatic systems, these particles impair water
quality, bioaccumulate in organisms, and compromise the food network. Because air
pollution franscends regional boundaries, a forecasting framework must be highly
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accurate and interpretable to guide emission regulations, land-use planning, and

water-quality safeguards, thereby ensuring ecosystem resilience (Fang et al., 2019; J.
He et al., 2023; Inam, Zaidi, et al., 2025; Martinez et al., 2024; Onwudiegwu et al., 2025;
Zhakypbek et al., 2024). Early PM2.5 forecasting efforts relied on statistical methods of
autoregressive infegrated moving average (ARIMA), moving-average techniques,
and linear regression that assumed stationarity and linear pollutant interactions.
Although these models provided baseline predictions, they oscillate when data is
incomplete or pollutant dynamics are non-linear. With the advent of machine
learning, algorithms such as support vector regression (SVR), decision-tree regressors,
random forest, and gradient-boosting methods like XGBoost captured non-linear
relationships and achieved R? scores typically between 0.75 and 0.85 in urban
environments, but struggled with missing values, shiffing emission patterns, and
generalizing across heterogeneous regions (Mathew et al., 2023; Vignesh et al., 2023).
The emergence of deep learning marked a paradigm shift.

Convolutional neural networks (CNNs) initially extracted spatial features from gridded
pollutant data, while recurrent neural networks (RNNs), notably Long Short-Term
Memory (LSTM) and bidirectional LSTM (BILSTM), modeled temporal dependencies.
Hybrid CNN-LSTM architectures achieved R? values exceeding 0.90, and BILSTM
variants further captured diurnal cycles and seasonal frends. However, RNNs require
sequential processing, which limits parallelization, and suffer from vanishing gradient
issues, constraining their ability to learn long-range dependencies. Moreover, these
deep models operate as black boxes, offering little insight into how meteorological
drivers, precursor pollutant concentrations, and land-use characteristics influence
forecasts (Esager & Unld, 2023; Z. He & Guo, 2024). Initially designed for natural
longuage processing, the transformer architecture revolutionized time-series
forecasting by replacing recurrence with self-attention. This mechanism processes
entire input sequences simultaneously,

capturing long-range dependencies without recursive loops and enabling parallel
computation. In PM2.5 forecasting, sparse-attention transformer networks achieved
an R2 score of 0.937 with an RMSE value of 19 pg/m? on Beijing data, outperforming
LSTM baselines. Temporal Fusion Transformers (TFTs) achieved an R? score of 0.97 and
an RMSE of 4.2 ug/m® in multi-day air-quality projections. Graph-enhanced
transformers weave spatial adjacency directly into their aftention scores, which
sharpens forecasts in areas shaped by rugged terrain and clustered emission sources.
The drawback is that these models still behave like black boxes, a problem in fields
where decisions demand visible reasoning (Rai et al., 2023; Rath & P, 2025; Zhang &
Zhang, 2023). To really understand what these models are doing, researchers are
leaning on explainable Al tools like SHAP and LIME. SHAP uses ideas from game theory
to break down how much each feature contributes overall. Hence, you get a global
view of what drives predictions, whereas LIME works differently; it builds a simple,
temporary model around a single case to show which factors matter most for that
specific forecast.

Combined, SHAP and LIME render transformer forecasts far less of a riddle. They can
demonstrate, for example, how temperature, humidity, wind, or precursor pollutants
can initiate the increase or decrease in the concentration of PM2.5 (Aldughayfig et
al., 2023; Gaspar et al., 2024; Roshinta & Gdbor, 2024; Salih et al., 2024). Such clarity
ensures that people are more disposed to believe the results and can satisfy
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regulatory requirements where explainability is not a luxury. The comparison of
different state-of-the-art PM2.5 concentration models is provided in Table 1. The
present study proposes a framework integrating transformer architecture with
country-level embedding vectors and XAl tools. Country embedding encodes
regional emission inventories, meteorological norms, and land-use typologies into
dense feature representations, augmenting time-series inputs to capture cross-
regional variability. It further addresses data scarcity in regions lacking dense
monitoring networks. By learning shared pollutant and meteorological patterns across
countries with similar environmental profiles, embedding vectors transfers knowledge
from data-rich to data-sparse areas, enhancing forecast reliability and informing
tfransboundary cooperation on air-quality management.

Table 1.
Characteristics of Various State-of-the-art Models for PM2.5 Forecasting
Model R? Score Model Type Key Characteristic
Sparse Attention Transformer-
Transformer (STN) (Zhang 0.9370 based Employs sparse self-attention
& Zhang, 2023)
Reslnformer (Al-ganess Not Transformer- Incorporates residual Informer blocks
et al., 2023) Specified based
Temporal Fusion Transformer-
Transformer (TFT) (Rath & 0.9700 Applies mulfi-horizon attention layers
based
P, 2025)
Graph Transformer
(TDGTN) (Zhang et al., NO.T. Graph Embeds spatial adjacency in attention
2022) Specified Transformer
BICONVLSTM + STA Combines convolutional and recurrent
(Lakshmi & 0.9686 Hybrid

Krishnamoorthy, 2024) layers

Moreover, the transformer’s parallel self-afttention offers computational efficiency
suitable for real-time forecasting across multiple monitoring stations, equipping
decision-makers with timely predictions essential for early warnings, air-quality alerts,
and adaptive emission regulations. Also, SHAP's global explanations highlight the
dominant drivers of PM2.5 variability. At the same time, LIME's localized surrogate
models reveal the factors precipitating specific high-pollution episodes, which allow
regulatory agencies to target interventions precisely when and where they will be
most effective. Table 2 presents the challenges and limitations in the present state-of-
the-art models, along with the solutions provided by the proposed architecture.

Table 2.
Challenges/Limitations of the State-of-the-art Models and their Solution with the Proposed
Architecture

Chadllenge / Limitation

Transformer + XAl Solution
SHAP and LIME furnish global and
local explanations

Traditional Weakness

Interpretability Black-box models hinder trust

Long-ferm RNNs face vanishing gradients seli-aftenfion captures
Dependencies dependencies in parallel
Cross-regional . e . Country embedding enables
C . Models trained on specific regions . .
Generalization adaptation across geographies
Feature Importance Lacks fransparent atfribution SHAP  values quantify each
Attribution mechanisms feature’s confribution
Complex Temporal- Multi-head  attention  discerns

Spatial Patterns

Policy Decision Support

Linear or sequential models fall short

Opaque rationale  undermines

regulatory use

multivariate patterns
XAl infegration provides evidence-
based transparency
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Poor handling of rare pollution Embedding and attentionimprove
events anomaly forecasting

Parallel attention reduces training
and inference time

Attention processes multiple inputs

Extreme Event Prediction

Computational Efficiency Sequential RNN bottlenecks

Multivariate Input

Integration simultaneously

Uncertainty . ) . Attention weights and SHAP
e No inherent confidence estimates . s .

Quantification dispersion indicate uncertainty

The current framework proposes an integrated forecasting framework combining
substantial precision, strict explainability, and local flexibility. The proposed framework
closes the gap between advanced machine learning and actionable environmental
policy by combining a high-performance transformer model with country
embeddings and robust XAl tools. The resulting transparent, high-fidelity PM2.5
forecasts empower policymakers to develop evidence-based strategies for
minimizing soil and water contamination, preserving biodiversity, and protecting
public health.

Limited variable scope

METHODOLOGY

Dataset Description

The dataset driving this study captures detailed environmental readings from various
countries and regions (see Figure 1 and Figure 2). Each row represents a unique
exposure event, identified by an exposure ID, and annotated with the type of
exposure (i.e., ambient air, water source). Geographic context is provided through
the country name, its corresponding three-letter ISO3 code, and the broader region
to which it belongs. Pollutant information is split into two complementary columns: a
concise code in pollutant and a descriptive label in pollutant name. At the same time,
units specify how concentrations are measured, for instance, micrograms per cubic
meter for air pollutants or parts per million for water contaminants.
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Figure 1.
PM2.5 by country in the SOGA Dataset (Inam, Khan, et al., 2024)
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Figure 2.

Countries Under Consideration in the SOGA Dataset (Inam, Khan, et al., 2024)

Spanning multiple years, this rich dataset allows the study to trace pollutant trends
over time and compare environmental burdens across contfinents. The study first
loaded the CSV via pandas to prepare the data, explicitly naming columns to prevent
misalignment. The study then addressed missing entries by interpolating temporal
gaps for continuous pollutants and imputing with region-specific medians when
values were sparse. Country identifiers were standardized to ensure that “United
States,” “USA,” and “US" all map to the same ISO3 code. Finally, categorical features
such as Pollutant and Region were label-encoded, and numeric features were scaled
to a standard range to prevent any single variable from dominating the model's
learning process. This careful pre-processing lays the groundwork for predictive
modeling: it ensures that the spatial distribution of pollutants is faithfully represented
and that the model can generalize patterns across time and geography.

Model Architecture (Transformer + Country Embedding)

At the center of the proposed approach is a transformer network enhanced by a
dedicated Country Embedding layer, designed to integrate global self-attention
capabilities with localized environmental context. The rationale is straightforward:
pollutant behavior follows temporal trajectories (seasonal cycles, long-term frends)
and spatial idiosyncrasies (industrial concentration, regulatory frameworks). The study
allows the model to internalize these broader socio-environmental factors alongside
raw pollutant readings by embedding each country into a continuous vector space.

Country Embedding Layer: Each ISO3 code is mapped to a learned 128-dimensional
vector. These embeddings evolve during training to reflect similarities and differences
between countries, so, for example, two neighboring nations with comparable air
quality profiles will acquire closely aligned vectors.

Transformer Encoder Stack: The study employs six layers of the classic transformer
encoder, where, within each layer:
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o A mulli-head self-attention mechanism (8 heads, 512-dimensional hidden
states) dynamically weights parts of the input sequence, enabling the model to focus
on critical fime points or related pollutants.

. A position-wise feedforward network refines these attention outputs, capturing
non-linear interactions.

o Residual connections and layer normalization ensure stable gradients and
robust learning over 100 training epochs.

Feature Fusion and Output: The resulting pollutant sequence of the last tfransformer
layer is concatenated with the country embedding. Such integrated feature
representation is then fed into fully connected layers, which either regress (to predict
concentration levels) or classify (to categorize risk levels), depending on the task.
Moreover, the fraining takes advantage of (see Table 3) the batch size of 64, and a
dropout rate of 0.1 is employed over the entire tfraining to prevent overfitting. The
researchers use the Adam optimizer and a learning rate of 0.001, a compromise
between stability and speed of convergence. In practice, this hybrid structure is most
effective at noticing the nuances of pollutant behavior, learning, for instance, that
spikes of PM in one country can predict the same behavior in an adjacent area, while
still reflecting the individual environmental fingerprint of that country.

Table 3.

Hyperparameter Configuration of the Proposed Model Architecture
Hyperparameter Value
Number of Transformer Layers 6
Hidden Dimension 512
Number of Attention Heads 8
Dropout Rate 0.1
Learning Rate 0.001
Batch Size 64
Epochs 100
Embedding Dimension 128

RESULTS

Many models were tested in the experiments (see Table 4), and it is evident that the
transformer using country embedding is the best-performing model. It had the lowest
mean squared error of 0.000469, the lowest root mean squared error of 0.021663, and
a mean absolute error of 0.11236 with an R-squared of 0.982513. These values show
that the model fits most of the variance in the target and leaves the residuals small.
The second most powerful baseline is the plain random forest regressor with slightly
worse MSE and RMSE, reporting R-squared of 0.980301. Attempts to stack or hybridize
the random forest with fully connected neural networks or recurrent units did not yield
gains and, in fact, led to small degradations. XGBoost-based variants performed
competitively but stayed behind the top two. At the same time, linear and polynomiall
regressor families, even when combined with recurrent layers, remained clustered
around an R-squared near 0.977 with larger errors. Classical deep learning models
such as LSTM, BILSTM, and feedforward networks performed poorly, producing RMSE
around 0.16 and R-squared close to zero. PINN and mismatched polynomial multilayer
perceptron combinations diverged with extreme errors, confiming they are
unsuitable for this forecasting.
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Table 4.
Performance Evaluation of Experiment Models for PM2.5 Forecasting

S. No. Algorithm MSE RMSE MAE R2
1. Transformer + Country Embedding 0.000469 0.021663 0.011236 0.982513
2. Random Forest Regressor 0.000529 0.022992 0.009216  0.980301
3. Random Forest Regressor + FCNN 0.000544 0.023332 0.010441 0.979715
4, Random Forest Regressor + LSTM 0.000555 0.023552  0.010277 0.979330
5. XGB Regressor 0.000575 0.023978 0.015691 0.978575
6. Linear regression + BiLSTM 0.000616 0.024820  0.016345 0.977045
7. XGBoost Regressor + FCNN 0.000616 0.024820 0.016345 0.977045
8. Polynomial regression + BiLSTM 0.000616 0.024820 0.016345 0.977045
9. Random Forest Regressor + LSTM + BiLSTM 0.000664 0.025767 0.016091 0.975258
10. Decision Tree Regressor 0.000824 0.028703 0.011105 0.969301
11. Transformer 0.002313 0.048094 0.042620 0.913807
12. Extra Trees Regressor + LSTM + BIiLSTM 0.003509 0.059233 0.035735 0.869258
13. Extra Trees Regressor 0.003678 0.060649 0.035796 0.862931
14. Extra Trees Regressor + FCNN 0.003682 0.060680 0.035834 0.862792
15. LSTM + BILSTM (Tuned) 0.024809 0.157510  0.114866 0.075507
16. LSTM + BILSTM 0.025538 0.159807  0.119532  0.048346
17. LSTM 0.025844 0.160760  0.120017  0.036959
18. FCNN 0.025929 0.161025 0.116842 0.033786
19. BiLSTM 0.026370 0.162389 0.121608 0.017345
20. Linear regression + MLP 0.026606 0.163113 0.126412  0.008562
21. PINN 952.6554 30.86511 22.69124  0.002721
22. Polynomial Regression 0.026820 0.163767 0.120827  0.000604
Linear Regression -
23. 0.026878 0.163946 0.120913 0.001590
SVR -
24. 0.027550 0.165981 0.116921 0.026599
Poly Regression + MLP -
25. 8.832946 2.972027  2.534358 308.1485

The cross-validation curves (see Figure 3) confirm the stability of the proposed
architecture. Across five folds, the mean absolute error and root mean squared error
fluctuate slightly around their fold means with no sign of overfitting. The mean squared
error follows the same pattern, and the R-squared remains consistently high across
folds, hovering near 0.98. The fifth fold shows the lowest error and the highest R-
squared, but the spread is small, supporting the average metrics' reliability.
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Cross-Validation Scores of the Transformer + Couniry Embedded Architecture
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Localinterpretability with LIME (see Figure 4) highlights two drivers. “Year” greater than
0.77 contributes a negative adjustment to the prediction, while the condition that the
encoded country lies between 99 and 151 pushes the prediction upward. The
magnitudes show that the country-related signal slightly outweighs the year effect for
this case, resulting in a modest positive net contribution.

Local explanation

Year = 0.77

929.00 = Country <= 151.00

T T T T T T T T
—0.008 —0.006 —0.004 —0.002 0. 000 0.002 0.004 0.006

Figure 4.

LIME Interpretation of the Proposed Transformer + Country Embedding Architecture

SHAP values (see Figure 5) have the widest country distribution, which suggests that
the country is the most influential feature in the dataset. Both low and high-country
embeddings can shift predictions in either direction, and the shifts can be moderate
in both directions with many observations. “Year” shows a SHAP spread much more
concentrated around zero, indicating a more consistent but weaker effect. A lower
value of the “Year” is more likely to decrease the output slightly, and a higher value is
more likely to increase the output; however, the effect is negligible compared to that
of the country. Introducing a learned country representation enables the transformer
architecture to gain a country-specific structure not found in traditional models or
plain transformers. This explains the improvement of the error metrics and the
robustness of the cross-validation.

High
| .
Country R L B ~WW“+-“. E
g
Year ane o %
]
(VIS
T T T T T T T T T LOW
—-0.125 -0.100 —0.075 —0.050 —0.025 0.000 0.025 0.050 0.075
SHAP value (impact on model output)
Figure 5.
SHAP Summary of the Proposed Transformer + Country Embedding Architecture

CONCLUSION
Transformer networks with country-specific embedding vectors and developing
explainable Al approaches are valuable additions to PM2.5 concentration
forecasting. The study demonstrates that the quality of the model offered is relatively
high in predicting the air quality, as the R-squared is close to 1, and the mean absolute
error is low. Moreover, SHAP and LIME explications address a major bottleneck of
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applying machine learning to a regulatory framework, which is necessary to make the
decision-making procedure transparent. The results demonstrate the importance of
using advanced machine learning and explainable Al to produce credibility and
policy recommendations. Furthermore, this method can, in principle, be applied to a
broad range of other environmental prediction applications, which were previously
challenging to control through the prediction and mitigation of complex eco-
problems at runtime.
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