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Air quality prediction is increasingly vital to environmental health, 

particularly for urban and rural regions, where dangerous 

particulate matter hazards often exist. This study presents a novel 

methodology for estimating PM2.5 concentrations using a 

transformer model with country-level embedding and explainable 

AI (XAI). The proposed approach is superior to conventional 

machine learning and deep learning techniques as it provides high 

accuracy and is interpretable and applicable to various 

geographic regions. Given the country-specific embeddings, the 

transformer architecture models the replacements caused by time 

and location variations in pollutants' concentrations, consequently 

allowing accurate predictions even for regions having sparse data. 

Furthermore, SHAP and LIME elucidate the model's tendency to 

predict, providing policymakers with valuable insights. Overall, the 

proposed architecture presents a stronger predictive power than 

other forecasting models, with an R-squared value of 0.98 and a 

mean absolute error of 0.011. Also, using country embedding has 

helped improve accuracy and the ability to apply to different 

regions. Hence, this research offers a plausible framework to 

forecast air pollution and evidence-based government 

policymaking and planning about air pollution and its health and 

environmental effects. 
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INTRODUCTION 

Forecasting the concentration of fine Particulate Matter (PM) of diameter less than 

2.5 µm commonly produced from combustion, industrial emissions, and secondary 

atmospheric reactions has become indispensable for environmental management, 

connecting scientific advances with policy interventions to protect ecosystems and 

human health (Inam, Iqbal, et al. 2024; Inam, Khan, et al. 2025; Rahujo et al. 2025). 

Once airborne, these particles travel long distances and deposit heavy metals and 

organic contaminants onto soil and water bodies. Accumulation of PM2.5-bound 

toxins in soil alters pH and nutrient availability, disrupting microbial communities and 

inhibiting plant growth. Similarly, in aquatic systems, these particles impair water 

quality, bioaccumulate in organisms, and compromise the food network. Because air 

pollution transcends regional boundaries, a forecasting framework must be highly 
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accurate and interpretable to guide emission regulations, land-use planning, and 

water-quality safeguards, thereby ensuring ecosystem resilience (Fang et al., 2019; J. 

He et al., 2023; Inam, Zaidi, et al., 2025; Martinez et al., 2024; Onwudiegwu et al., 2025; 

Zhakypbek et al., 2024). Early PM2.5 forecasting efforts relied on statistical methods of 

autoregressive integrated moving average (ARIMA), moving-average techniques, 

and linear regression that assumed stationarity and linear pollutant interactions. 

Although these models provided baseline predictions, they oscillate when data is 

incomplete or pollutant dynamics are non-linear. With the advent of machine 

learning, algorithms such as support vector regression (SVR), decision-tree regressors, 

random forest, and gradient-boosting methods like XGBoost captured non-linear 

relationships and achieved R² scores typically between 0.75 and 0.85 in urban 

environments, but struggled with missing values, shifting emission patterns, and 

generalizing across heterogeneous regions (Mathew et al., 2023; Vignesh et al., 2023). 

The emergence of deep learning marked a paradigm shift.  

Convolutional neural networks (CNNs) initially extracted spatial features from gridded 

pollutant data, while recurrent neural networks (RNNs), notably Long Short-Term 

Memory (LSTM) and bidirectional LSTM (BiLSTM), modeled temporal dependencies. 

Hybrid CNN-LSTM architectures achieved R² values exceeding 0.90, and BiLSTM 

variants further captured diurnal cycles and seasonal trends. However, RNNs require 

sequential processing, which limits parallelization, and suffer from vanishing gradient 

issues, constraining their ability to learn long-range dependencies. Moreover, these 

deep models operate as black boxes, offering little insight into how meteorological 

drivers, precursor pollutant concentrations, and land-use characteristics influence 

forecasts (Esager & Ünlü, 2023; Z. He & Guo, 2024). Initially designed for natural 

language processing, the transformer architecture revolutionized time-series 

forecasting by replacing recurrence with self-attention. This mechanism processes 

entire input sequences simultaneously,  

capturing long-range dependencies without recursive loops and enabling parallel 

computation. In PM2.5 forecasting, sparse-attention transformer networks achieved 

an R² score of 0.937 with an RMSE value of 19 µg/m³ on Beijing data, outperforming 

LSTM baselines. Temporal Fusion Transformers (TFTs) achieved an R² score of 0.97 and 

an RMSE of 4.2 µg/m³ in multi-day air-quality projections. Graph-enhanced 

transformers weave spatial adjacency directly into their attention scores, which 

sharpens forecasts in areas shaped by rugged terrain and clustered emission sources. 

The drawback is that these models still behave like black boxes, a problem in fields 

where decisions demand visible reasoning (Rai et al., 2023; Rath & P, 2025; Zhang & 

Zhang, 2023). To really understand what these models are doing, researchers are 

leaning on explainable AI tools like SHAP and LIME. SHAP uses ideas from game theory 

to break down how much each feature contributes overall. Hence, you get a global 

view of what drives predictions, whereas LIME works differently; it builds a simple, 

temporary model around a single case to show which factors matter most for that 

specific forecast.  

Combined, SHAP and LIME render transformer forecasts far less of a riddle. They can 

demonstrate, for example, how temperature, humidity, wind, or precursor pollutants 

can initiate the increase or decrease in the concentration of PM2.5 (Aldughayfiq et 

al., 2023; Gaspar et al., 2024; Roshinta & Gábor, 2024; Salih et al., 2024). Such clarity 

ensures that people are more disposed to believe the results and can satisfy 
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regulatory requirements where explainability is not a luxury. The comparison of 

different state-of-the-art PM2.5 concentration models is provided in Table 1. The 

present study proposes a framework integrating transformer architecture with 

country-level embedding vectors and XAI tools. Country embedding encodes 

regional emission inventories, meteorological norms, and land-use typologies into 

dense feature representations, augmenting time-series inputs to capture cross-

regional variability. It further addresses data scarcity in regions lacking dense 

monitoring networks. By learning shared pollutant and meteorological patterns across 

countries with similar environmental profiles, embedding vectors transfers knowledge 

from data-rich to data-sparse areas, enhancing forecast reliability and informing 

transboundary cooperation on air-quality management.  

Table 1.  

Characteristics of Various State-of-the-art Models for PM2.5 Forecasting 
Model R² Score Model Type Key Characteristic 

Sparse Attention 

Transformer (STN) (Zhang 
& Zhang, 2023) 

0.9370 
Transformer-

based 
Employs sparse self-attention 

ResInformer (Al-qaness 

et al., 2023) 

Not 

Specified 

Transformer-

based 
Incorporates residual Informer blocks 

Temporal Fusion 

Transformer (TFT) (Rath & 
P, 2025) 

0.9700 
Transformer-

based 
Applies multi-horizon attention layers 

Graph Transformer 

(TDGTN) (Zhang et al., 

2022) 

Not 

Specified 

Graph 

Transformer 
Embeds spatial adjacency in attention 

BiConvLSTM + STA 
(Lakshmi & 
Krishnamoorthy, 2024) 

0.9686 Hybrid 
Combines convolutional and recurrent 

layers 

 

Moreover, the transformer’s parallel self-attention offers computational efficiency 

suitable for real-time forecasting across multiple monitoring stations, equipping 

decision-makers with timely predictions essential for early warnings, air-quality alerts, 

and adaptive emission regulations. Also, SHAP’s global explanations highlight the 

dominant drivers of PM2.5 variability. At the same time, LIME's localized surrogate 

models reveal the factors precipitating specific high-pollution episodes, which allow 

regulatory agencies to target interventions precisely when and where they will be 

most effective. Table 2 presents the challenges and limitations in the present state-of-

the-art models, along with the solutions provided by the proposed architecture. 

Table 2.  

Challenges/Limitations of the State-of-the-art Models and their Solution with the Proposed 

Architecture 
Challenge / Limitation Traditional Weakness Transformer + XAI Solution 

Interpretability Black-box models hinder trust 
SHAP and LIME furnish global and 

local explanations 

Long-term 

Dependencies 
RNNs face vanishing gradients 

Self-attention captures 

dependencies in parallel 

Cross-regional 

Generalization 
Models trained on specific regions 

Country embedding enables 

adaptation across geographies 

Feature Importance 

Attribution 

Lacks transparent attribution 

mechanisms 

SHAP values quantify each 

feature’s contribution 

Complex Temporal-

Spatial Patterns 
Linear or sequential models fall short 

Multi-head attention discerns 

multivariate patterns 

Policy Decision Support 
Opaque rationale undermines 

regulatory use 

XAI integration provides evidence-

based transparency 
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Extreme Event Prediction 
Poor handling of rare pollution 

events 

Embedding and attention improve 

anomaly forecasting 

Computational Efficiency Sequential RNN bottlenecks 
Parallel attention reduces training 

and inference time 

Multivariate Input 

Integration 
Limited variable scope 

Attention processes multiple inputs 

simultaneously 

Uncertainty 

Quantification 
No inherent confidence estimates 

Attention weights and SHAP 

dispersion indicate uncertainty 

The current framework proposes an integrated forecasting framework combining 

substantial precision, strict explainability, and local flexibility. The proposed framework 

closes the gap between advanced machine learning and actionable environmental 

policy by combining a high-performance transformer model with country 

embeddings and robust XAI tools. The resulting transparent, high-fidelity PM2.5 

forecasts empower policymakers to develop evidence-based strategies for 

minimizing soil and water contamination, preserving biodiversity, and protecting 

public health.  

METHODOLOGY 

Dataset Description 

The dataset driving this study captures detailed environmental readings from various 

countries and regions (see Figure 1 and Figure 2). Each row represents a unique 

exposure event, identified by an exposure ID, and annotated with the type of 

exposure (i.e., ambient air, water source). Geographic context is provided through 

the country name, its corresponding three-letter ISO3 code, and the broader region 

to which it belongs. Pollutant information is split into two complementary columns: a 

concise code in pollutant and a descriptive label in pollutant name. At the same time, 

units specify how concentrations are measured, for instance, micrograms per cubic 

meter for air pollutants or parts per million for water contaminants. 

 

Figure 1. 

PM2.5 by country in the SOGA Dataset (Inam, Khan, et al., 2024) 
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Figure 2.  

Countries Under Consideration in the SOGA Dataset (Inam, Khan, et al., 2024)  

Spanning multiple years, this rich dataset allows the study to trace pollutant trends 

over time and compare environmental burdens across continents. The study first 

loaded the CSV via pandas to prepare the data, explicitly naming columns to prevent 

misalignment. The study then addressed missing entries by interpolating temporal 

gaps for continuous pollutants and imputing with region-specific medians when 

values were sparse. Country identifiers were standardized to ensure that “United 

States,” “USA,” and “US” all map to the same ISO3 code. Finally, categorical features 

such as Pollutant and Region were label-encoded, and numeric features were scaled 

to a standard range to prevent any single variable from dominating the model's 

learning process. This careful pre-processing lays the groundwork for predictive 

modeling: it ensures that the spatial distribution of pollutants is faithfully represented 

and that the model can generalize patterns across time and geography. 

Model Architecture (Transformer + Country Embedding) 

At the center of the proposed approach is a transformer network enhanced by a 

dedicated Country Embedding layer, designed to integrate global self-attention 

capabilities with localized environmental context. The rationale is straightforward: 

pollutant behavior follows temporal trajectories (seasonal cycles, long-term trends) 

and spatial idiosyncrasies (industrial concentration, regulatory frameworks). The study 

allows the model to internalize these broader socio-environmental factors alongside 

raw pollutant readings by embedding each country into a continuous vector space. 

Country Embedding Layer: Each ISO3 code is mapped to a learned 128-dimensional 

vector. These embeddings evolve during training to reflect similarities and differences 

between countries, so, for example, two neighboring nations with comparable air 

quality profiles will acquire closely aligned vectors. 

Transformer Encoder Stack: The study employs six layers of the classic transformer 

encoder, where, within each layer: 
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• A multi-head self-attention mechanism (8 heads, 512-dimensional hidden 

states) dynamically weights parts of the input sequence, enabling the model to focus 

on critical time points or related pollutants. 

• A position-wise feedforward network refines these attention outputs, capturing 

non-linear interactions. 

• Residual connections and layer normalization ensure stable gradients and 

robust learning over 100 training epochs. 

Feature Fusion and Output: The resulting pollutant sequence of the last transformer 

layer is concatenated with the country embedding. Such integrated feature 

representation is then fed into fully connected layers, which either regress (to predict 

concentration levels) or classify (to categorize risk levels), depending on the task. 

Moreover, the training takes advantage of (see Table 3) the batch size of 64, and a 

dropout rate of 0.1 is employed over the entire training to prevent overfitting. The 

researchers use the Adam optimizer and a learning rate of 0.001, a compromise 

between stability and speed of convergence. In practice, this hybrid structure is most 

effective at noticing the nuances of pollutant behavior, learning, for instance, that 

spikes of PM in one country can predict the same behavior in an adjacent area, while 

still reflecting the individual environmental fingerprint of that country. 

Table 3. 

 Hyperparameter Configuration of the Proposed Model Architecture 
Hyperparameter Value 

Number of Transformer Layers 6 

Hidden Dimension 512 

Number of Attention Heads 8 

Dropout Rate 0.1 

Learning Rate 0.001 

Batch Size 64 

Epochs 100 

Embedding Dimension 128 

RESULTS 

Many models were tested in the experiments (see Table 4), and it is evident that the 

transformer using country embedding is the best-performing model. It had the lowest 

mean squared error of 0.000469, the lowest root mean squared error of 0.021663, and 

a mean absolute error of 0.11236 with an R-squared of 0.982513. These values show 

that the model fits most of the variance in the target and leaves the residuals small. 

The second most powerful baseline is the plain random forest regressor with slightly 

worse MSE and RMSE, reporting R-squared of 0.980301. Attempts to stack or hybridize 

the random forest with fully connected neural networks or recurrent units did not yield 

gains and, in fact, led to small degradations. XGBoost-based variants performed 

competitively but stayed behind the top two. At the same time, linear and polynomial 

regressor families, even when combined with recurrent layers, remained clustered 

around an R-squared near 0.977 with larger errors. Classical deep learning models 

such as LSTM, BiLSTM, and feedforward networks performed poorly, producing RMSE 

around 0.16 and R-squared close to zero. PINN and mismatched polynomial multilayer 

perceptron combinations diverged with extreme errors, confirming they are 

unsuitable for this forecasting. 
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Table 4.  

Performance Evaluation of Experiment Models for PM2.5 Forecasting 

S. No. Algorithm MSE RMSE MAE R2 

1. Transformer + Country Embedding 0.000469 0.021663 0.011236 0.982513 

2. Random Forest Regressor 0.000529 0.022992 0.009216 0.980301 

3. Random Forest Regressor + FCNN 0.000544 0.023332 0.010441 0.979715 

4. Random Forest Regressor + LSTM 0.000555 0.023552 0.010277 0.979330 

5. XGB Regressor 0.000575 0.023978 0.015691 0.978575 

6. Linear regression + BiLSTM 0.000616 0.024820 0.016345 0.977045 

7. XGBoost Regressor + FCNN 0.000616 0.024820 0.016345 0.977045 

8. Polynomial regression + BiLSTM 0.000616 0.024820 0.016345 0.977045 

9. Random Forest Regressor + LSTM + BiLSTM 0.000664 0.025767 0.016091 0.975258 

10. Decision Tree Regressor 0.000824 0.028703 0.011105 0.969301 

11. Transformer 0.002313 0.048094 0.042620 0.913807 

12. Extra Trees Regressor + LSTM + BiLSTM 0.003509 0.059233 0.035735 0.869258 

13. Extra Trees Regressor 0.003678 0.060649 0.035796 0.862931 

14. Extra Trees Regressor + FCNN 0.003682 0.060680 0.035834 0.862792 

15. LSTM + BiLSTM (Tuned) 0.024809 0.157510 0.114866 0.075507 

16. LSTM + BiLSTM 0.025538 0.159807 0.119532 0.048346 

17. LSTM 0.025844 0.160760 0.120017 0.036959 

18. FCNN 0.025929 0.161025 0.116842 0.033786 

19. BiLSTM 0.026370 0.162389 0.121608 0.017345 

20. Linear regression + MLP 0.026606 0.163113 0.126412 0.008562 

21. PINN 952.6554 30.86511 22.69124 0.002721 

22. Polynomial Regression 0.026820 0.163767 0.120827 0.000604 

23. 
Linear Regression 

0.026878 0.163946 0.120913 
-

0.001590 

24. 
SVR 

0.027550 0.165981 0.116921 
-

0.026599 

25. 
Poly Regression + MLP 

8.832946 2.972027 2.534358 
-

328.1485 

The cross-validation curves (see Figure 3) confirm the stability of the proposed 

architecture. Across five folds, the mean absolute error and root mean squared error 

fluctuate slightly around their fold means with no sign of overfitting. The mean squared 

error follows the same pattern, and the R-squared remains consistently high across 

folds, hovering near 0.98. The fifth fold shows the lowest error and the highest R-

squared, but the spread is small, supporting the average metrics' reliability. 

 

Figure 3.  

Cross-Validation Scores of the Transformer + Country Embedded Architecture 
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Local interpretability with LIME (see Figure 4) highlights two drivers. “Year” greater than 

0.77 contributes a negative adjustment to the prediction, while the condition that the 

encoded country lies between 99 and 151 pushes the prediction upward. The 

magnitudes show that the country-related signal slightly outweighs the year effect for 

this case, resulting in a modest positive net contribution. 

 

Figure 4. 

LIME Interpretation of the Proposed Transformer + Country Embedding Architecture 

SHAP values (see Figure 5)  have the widest country distribution, which suggests that 

the country is the most influential feature in the dataset. Both low and high-country 

embeddings can shift predictions in either direction, and the shifts can be moderate 

in both directions with many observations. “Year” shows a SHAP spread much more 

concentrated around zero, indicating a more consistent but weaker effect. A lower 

value of the “Year” is more likely to decrease the output slightly, and a higher value is 

more likely to increase the output; however, the effect is negligible compared to that 

of the country. Introducing a learned country representation enables the transformer 

architecture to gain a country-specific structure not found in traditional models or 

plain transformers. This explains the improvement of the error metrics and the 

robustness of the cross-validation. 

 

Figure 5.  

SHAP Summary of the Proposed Transformer + Country Embedding Architecture 

CONCLUSION 
Transformer networks with country-specific embedding vectors and developing 

explainable AI approaches are valuable additions to PM2.5 concentration 

forecasting. The study demonstrates that the quality of the model offered is relatively 

high in predicting the air quality, as the R-squared is close to 1, and the mean absolute 

error is low. Moreover, SHAP and LIME explications address a major bottleneck of 
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applying machine learning to a regulatory framework, which is necessary to make the 

decision-making procedure transparent. The results demonstrate the importance of 

using advanced machine learning and explainable AI to produce credibility and 

policy recommendations. Furthermore, this method can, in principle, be applied to a 

broad range of other environmental prediction applications, which were previously 

challenging to control through the prediction and mitigation of complex eco-

problems at runtime.   
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