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This research delves into the impact of Big Data Analytics Capabilities
(BDAC) on the performance of green supply chains in Pakistan. The
investigation relies on primary data obtained from the manufacturing
sectors, utilizing a sample size of 129 for the final analysis. Structural
equation modeling (SEM) through SmartPLS 4 was employed for data
analysis. The findings reveal a statistically significant and positive
correlation between BDAC and Green Innovation (Gl), Green Supply
Chain Integration (GSCI), and Green Supply Chain Performance
(GSCP). Notably, the study underscores the more pronounced
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impact of BDAC on Green Innovation compared to its effects on
Green Supply Chain Integration and Performance. Several limitations
were encountered during the study, including reliance on a
questionnaire for primary data collection, the ufilization of cross-
sectional data, and the focus on a singular context within one
country. Despite these constraints, the results offer valuable insights
for stakeholders and policymakers in Pakistan's manufacturing sector,
supporting effective management of organizational competencies
related to big data analytics to enhance both green innovation and
green supply chain performance.

Ali Ismail is currently affiliated with the
Pakistan International Airline, Pakistan.
Email: engr.alihussain02@gmail.com

Corresponding Author*
Keywords: Big Data Analytics Capabilities (BDAC); Green Innovation (Gl); Green Supply Chain Integration
(GSCI); Green Supply Chain Performance (GSCP) and Green Supply Chain (GSC).

© 2025 The Asian Academy of Business and social science research Ltd Pakistan.

INTRODUCTION

Over the past two decades, the global business landscape has undergone profound
transformation. Rapid globalization, digitalization, and sustainability imperatives have
compelled organizations to strategically utilize their resources to improve
performance in increasingly volatile and dynamic markets (Cao & Zhang, 2011).
Today's firms operate within environments characterized by high uncertainty,
technological disruption, and environmental consciousness. As a result, the traditional
focus on profitability and operational efficiency has evolved toward incorporating
ecological and social sustainability. Increasing stakeholder pressure—emanating from
governments, customers, competitors, and activist groups—has forced companies to
adopt environmentally responsible practices and reconfigure their supply chain
structures to meet sustainability demands (Chang, 2011; Yang & Lin, 2020).
Consequently, environmental sustainability has emerged as a decisive factor
influencing corporate competitiveness and long-term viability. This shift in corporate
strategy has givenrise to Green Supply Chain (GSC) practices and Green Innovation
(Gl), which emphasize balancing economic performance with ecological
responsibility (Sun & Sun, 2021). Green Supply Chain Integration (GSCI) and Gl have
become essential mechanisms through which firms mitigate environmental impacts
while maintaining operational efficiency and profitability. Supply chain sustainability
has further demonstrated its potential to generate customer value by strengthening
intfer-firm linkages among suppliers, distributors, and consumers. These linkages
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facilitate resource sharing, enhance responsiveness, and promote financial benefits
through coordinated sustainability initiatives (Aviles-Gonzalez et al., 2017). Moreover,
such strategic alignment fosters the creation of novel competitive advantages by
embedding environmental responsibility into the core business model (Jajja et al.,
2018). Organizations increasingly recognize the green supply chain as a source of
competitive advantage. Achieving this advantage requires strategic commitment,
collaboration with supply chain partners, and continuous innovation. Research
highlights that Big Data Analytics Capabilities (BDAC) have emerged as a critical
enabler of these goals (Mani et al., 2017; Lamba et al., 2019; Al-Khatib et al., 2022).
The ability to collect, process, and interpret large volumes of data empowers
organizations to make informed decisions, optimize resource use, and identify areas
for environmental improvement. BDAC thus represent a transformative tool for
achieving both operational excellence and ecological sustainability.

However, the globalized supply chain landscape has also become increasingly
complex. Factors such as shortened product lifecycles, heightened customer
expectations, rapid technological changes, and dynamic market conditions have
infroduced significant challenges to maintaining supply chain efficiency (Fazlollahi &
Franke, 2018). In this context, innovation and adaptability have become
indispensable capabilities. Green Innovation (Gl), defined as the development and
implementation of environmentally friendly products, services, and processes, is now
considered a strategic pathway to achieving sustainable competitiveness (Lisi et al.,
2020). BDAC play a vital role in enabling Gl by providing insights into supplier selection
(Lamba et al., 2019), designing optimal sales networks (Al-Khatib & Ahmed, 2022), and
enhancing innovation processes (Yildizbasi & Arioz, 2022; Bhatti et al., 2022; Centobelli
et al., 2022). These capabilities allow firms to derive actionable intelligence, minimize
waste, and create value-driven innovations that improve overall GSC effectiveness.

Despite these benefits, integrating Gl within the structure of GSCs remains a complex
endeavor. Managerial, organizational, and technical challenges often hinder the
seamless implementation of green initiatives (Burki, 2018; Song et al., 2019). Achieving
effective green innovation requires alignment across departments, technological
readiness, and cultural adaptation—factors that are not always present in developing
economies. Understanding the antecedents that foster GI and GSCI is therefore
essential for both theoretical advancement and practical implementation.

GSC Integration (GSCI) has attracted considerable attention from scholars and
practitioners as a key determinant of environmental collaboration and operational
synergy (Lo et al., 2018; Benzidia et al., 2021; Kong et al., 2021; Xi et al., 2022). GSCI
reflects the extent to which firms incorporate environmental objectives within their
supply chain relationships, fostering alignment among partners to jointly address
ecological challenges (Yang et al., 2020). Previous research has largely examined the
organizational and inter-firm characteristics influencing GSCI (Afum et al., 2020; Cai et
al., 2020; Wang et al., 2018; Wang & Feng, 2022). However, limited empirical studies
have explored BDAC as a critical antecedent of GSCI (Benzidia et al., 2021; Shafique
et al., 2018). Given that BDAC enhance visibility, coordination, and decision-making,
it is plausible that they play an essential role in deepening GSCI and fostering overall
supply chain sustainability (Brinch, 2018; Gang et al., 2016). Recent studies underscore
BDAC as a foundation for intelligent decision-making and innovation in sustainable
operations. By uncovering hidden patterns and trends, BDAC improve operational
efficiency, reduce waste, and enhance environmental performance (Pawar & Paluri,
2022; Al-Khatib & Shuhaiber, 2022). These analytical capabilities facilitate real-time
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monitoring of emissions, resource utilization, and logistics, leading to smarter and
greener supply chain practices (Sarkis et al., 2017; Zhang et al., 2018; Govindan et al.,
2015). BDAC not only improve operational performance but also foster innovation,
compliance with environmental regulations, and transitions toward circular economy
models (Davenport & Harris, 2007; Chae & Olson, 2015; Peng et al., 2019; Preston et
al., 2019; Zhou et al., 2019).

In the context of Pakistan, sustainability has gained increasing attention due to
industrial growth, resource constraints, and rising environmental concerns.
Manufacturers and corporations are increasingly acknowledging the importance of
adopting green practices to reduce ecological footprints and ensure long-term
viability (Awan et al., 2022). BDAC offer Pakistani firms an opportunity to harness data
for improved decision-making, foster innovation, and strengthen environmental
performance (Waqgas & Tan, 2023). Despite this potential, challenges remain
regarding data infrastructure, standardization, and analytics competencies. The
infegration of BDAC into GSC frameworks is often hindered by inadequate
infrastructure, lack of standardized sustainability metrics, and limited human expertise
(lgbal et al., 2018; Ahmad et al., 2019; Mishra et al., 2018; Gligor et al., 2019).

Scholars have identified several gaps in the literature that warrant deeper exploration.
These include the absence of comprehensive predictive models to assess
environmental impacts (lvanov, 2018), limited cost-benefit analyses of BDAC for
sustainable operations (Kusi-Sarpong et al., 2016), and insufficient research on real-
time decision support systems (lvanov, 2020). Additionally, there is a need to examine
BDAC's role in enhancing supply chain resilience amid environmental disruptions
(Ivanov & Dolgui, 2020) and ensuring compliance with evolving regulatory standards
(Gungor & Gupta, 2019). While technologies such as loT and blockchain offer new
opportunities for integration with BDAC, research on their combined implications for
GSC performance remains scarce (Min et al., 2020; Chae & Olson, 2017). Issues of
data quality, reliability, and visibility within green supply chains also remain unresolved
(Kannan et al., 2016; Jayaraman & Luo, 2019; Govindan et al., 2020). Furthermore, the
adoption of BDAC among small and medium enterprises (SMEs) presents unique
challenges due to limited financial and technical resources (Dubey et al., 2019).

In light of these limitations, there exists a pressing need to examine how BDAC
influence GI, GSCI, and overall GSC performance, particularly in developing
economies like Pakistan. The current body of research provides insufficient insight into
the interconnections among these variables and their combined implications for
sustainability. This study addresses this critical gap by investigating the impact of BDAC
on Gl and GSCI, and their subsequent effects on GSC performance.

Grounded in the Resource-Based View (RBV) and Dynamic Capability Theory (DCT),
this research posits that BDAC act as valuable, rare, and inimitable resources that
enhance organizational adaptability and innovation (Barney, 1991; Teece, 2007).
These capabilities enable firms to integrate sustainability within strategic decision-
making, thereby fostering long-term competitive advantage. The study aims to
confribute theoretically by expanding understanding of BDAC's role in sustainable
supply chain management, and practically by providing empirical evidence to guide
managers and policymakers in Pakistan. The findings are expected to offer insights
info how firms can strategically invest in data analytics to drive green innovation,
strengthen supply chain integration, and improve environmental performance. By
bridging the existing knowledge gap, this research aspires to support both academic
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scholarship and industrial transformation toward sustainable business practices. For
policymakers and practitioners in Pakistan, the study provides actionable directions
for leveraging BDAC to achieve environmental stewardship, enhance
competitiveness, and contribute to sustainable economic growth (Awan et al., 2022).

LITERATURE REVIEW

Theoretical Background

The Resource-Based Theory (RBT) and the Dynamic Capability Theory (DCT) together
provide the theoretical foundation for this study. According to RBT, a firm’s ability to
achieve superior performance depends on how effectively it acquires, develops, and
utilizes valuable, rare, inimitable, and non-substitutable (VRIN) resources (Barney,
1991). The theory emphasizes that organizations possess heterogeneous resources—
tangible and intangible—that determine their competitiveness and long-term
sustainability. In the context of Industry 4.0, firms combine organizational, human, and
technological competencies to enhance productivity, reduce costs, and drive
innovation (Al-Khatib, 2022a, b). These competencies illustrate RBT's central premise
that effective resource orchestration enables firms to transform capabilities into
strategic advantages.

RBT highlights the importance of identifying and leveraging core competencies that
provide a unique edge (Lee et al., 2017; Al-Rakhami et al., 2021). Resources can be
categorized as tangible assets (e.g., data systems, infrastructure, and analytical
technologies), intangible assets (e.g., organizational learning and data-driven
culture), human skills (technical and managerial), and organizational capabilities
(e.g., innovation and supply chain management). When integrated effectively, these
resources foster sustainable competitive advantage by enabling innovation and
operational excellence (Amaya et al., 2022). However, RBT's limitation lies in its
relatively static view of resources, as it does not fully address how firms adapt and
reconfigure them in dynamic environments.

The Dynamic Capability Theory (DCT) extends RBT by emphasizing a firm’s ability to
integrate, build, and reconfigure competencies to address rapidly changing
environments (Teece et al., 1997; Eisenhardt & Martin, 2000). It focuses on sensing
opportunities, seizing them through innovation, and fransforming existing resources to
maintain competitiveness. DCT is particularly relevant in contexts characterized by
technological disruption, globalization, and environmental uncertainty, where
adaptability becomes a crifical success factor (Shan et al., 2019). Firms with strong
dynamic capabilities can better identify emerging risks and opportunities, innovate
proactively, and sustain performance advantages (Ambrosini & Bowman, 2009; Helfat
& Peteraf, 2009; Zhou et al., 2016).

Innovation and learning form the core of dynamic capabilities. Organizations that
continuously acquire and apply new knowledge are better positioned to refine
processes, develop new products, and respond to environmental challenges (Babu
et al., 2021). DCT also provides strategic guidance for resource allocation, ensuring
investments are directed toward activities that align with changing market and
sustainability demands. In confrast to RBT's focus on resource possession, DCT
emphasizes renewal and fransformation—making it essential for firms operating in fast-
changing and sustainability-driven industries.

17



Role of Big Data Analytics Capabilities lkram, M & Ismail, A et al., (2025)
Together, RBT and DCT offer a comprehensive framework for understanding how Big
Data Analytics Capabilities (BDAC) can drive Green Innovation (Gl), Green Supply
Chain Integration (GSCI), and performance. RBT explains how BDAC act as strategic
resources, while DCT elucidates how firms can dynamically leverage and reconfigure
these capabilities to foster innovation, adaptability, and sustainable competitive
advantage.

HYPOTHESIS DEVELOPMENT

Big Data Analytics Capabilities Positively Affect Green Innovation

Green Innovation (Gl) includes all environmentally oriented advancements in
products, services, or processes that mitigate ecological harm and optimize resource
use (Elias, 2020). Rooted in the Natural Resource-Based View (NRBV), Gl enhances
strategic competence and fosters sustainable value creation (Hart, 1995; Hart &
Dowell, 2011; Arranz et al., 2020). Recent studies affirm that Big Data Analytics
Capabilities (BDAC) enhance Gl by providing real-time insights, enabling data-driven
innovation, and supporting ecological initiatives (Mani et al., 2017; Imran et al., 2021;
Waqas et al., 2021; Dong et al., 2022; Mavi & Mavi, 2021). BDAC empower firms to
identify patterns, improve forecasting, and translate environmental data into
actionable innovation strategies (Bag et al., 2020; Arici et al, 2022).
H1: Big Data Analytics Capabilities positively affect Green Innovation.

Big Data Analytics Capabilities Positively Relate to Green Supply Chain
Integration

BDAC facilitate environmentally sustainable operations by enabling data-driven
integration across the supply chain (Benzidia et al., 2021; Song et al., 2017). Grounded
in the Overarching Integrated Process Team (OIPT) framework, BDAC enhance green
supplier, intfernal, and customer integration by improving data quality,
communication, and responsiveness (Ashaari et al., 2021; Chen et al., 2015; Galbraith,
1974; Bahrami & Shokouhyar, 2021; Brinch, 2018). Prior studies highlight BDAC's role in
reducing uncertainty and strengthening collaboration (Cai et al., 2020; Razaghi &
Shokouhyar, 2021; Wong et al., 2020; Wu, 2013; Baah et al., 2021; Kong et al., 2021;
Yang et al., 2021).
H2: Big Data Analytics Capabilities positively relate to Green Supply Chain Integration.

Big Data Analytics Capabilities Positively Affect Green Supply Chain
Performance

Green Supply Chain (GSC) performance integrates economic, environmental, and
operational efficiency (Peng et al., 2020). BDAC enhance GSC performance by
improving forecasting, optimizing logistics, and minimizing ecological impact
(Wamba et al.,, 2017; Dubey et al., 2020; Sharma et al., 2022). By leveraging
technological, human, and organizational resources, BDAC refine decision-making
and strengthen collaboration (Gunasekaran et al., 2017; Lee & Mangalaragj, 2022;
Nguyen et al.,, 2018). They also reduce material waste, improve supply-demand
alignment, and predict environmental risks (Lee, 2017; Seyedan & Mafakheri, 2020;
Wang et al, 2016, Papadopoulos et al, 2017; Belhadi et al, 2021).
H3: Big Data Analytics Capabilities positively affect Green Supply Chain Performance.

Green Innovation Positively Affects Green Supply Chain Performance

Green Innovation (Gl) enhances sustainable supply chain practices by improving
production, purchasing, and distribution efficiency (Junaid et al., 2022). Studies show
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Gl strengthens GSC performance through eco-innovation, R&D, and collaboration
(Bag et al., 2022; Fernando et al., 2019; Rodriguez-Gonzdlez et al., 2022). Gl enables
knowledge sharing, trust, and learning among supply chain partners, reducing waste
and enhancing adaptability (Lisi et al., 2020; Kong et al., 2020; Seman et al., 2012).
Consistent with NRBV, Gl drives superior outcomes and long-term competitiveness
(Wong et al., 2020; Wu, 2013).

H4: Green Innovation positively affects Green Supply Chain Performance.
Green Supply Chain Integration Positively Relates to Green Innovation

Knowledge sharing and collaboration with suppliers and customers accelerate Green
Innovation (Wong et al., 2011; Zhao et al., 2018). Green Supply Chain Integration
(GSCI) improves knowledge flow, resolves conflicts, and supports eco-friendly design
(Koufteros et al., 2005; Lau et al., 2010; Wong et al., 2020; Song et al., 2018). Supplier
collaboration fosters environmental learning, data processing, and co-creation,
driving Green Product Development Innovation (Qu & Liu, 2022; Pham & Pham, 2021;
Freije et al., 2021; Junaid et al., 2022).
H5: Green Supply Chain Integration positively relates to Green Innovation.

Green Supply Chain Integration Positively Relates to Green Supply Chain
Performance

Grounded in the relational view, Supply Chain Integration (SCI) enhances
collaboration and competitive advantage (Jajja et al., 2018). Internal, supplier, and
customer integration improve coordination, forecasting, and product quality (Flynn et
al., 2010; Qiet al., 2017; Huo et al., 2016; Ni & Sun, 2019; Wang & Zhang, 2019). Supplier
integration strengthens productivity, reduces costs, and supports innovation (Khanuja
& Jain, 2019; Shou et al., 2018; Kim & Chai, 2016; Seo et al., 2014). Collectively, these
integrations improve GSC efficiency and responsiveness.
Hé: Green Supply Chain Integration positively relates to Green Supply Chain
Performance

CONCEPTUAL FRAMEWORK

Green Innovation

H3
|

Big Data Analytics Green Supply

Capabilities H5 I Chain Performance

Green Supply
Chain Integration

RESEARCH METHODOLOGY

This study adopts a quantitative approach aligned with prior comparative research
to examine relationships among Big Data Analytics Capabilities (BDAC), Green
Innovation (Gl), Green Supply Chain (GSC) Integration, and GSC Performance.
Statistical and mathematical analyses, including regression and measures of central
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tendency, were used to validate relationships and ensure reliability (Creswell &
Creswell, 2018; Hair et al., 2021). An explanatory research design was employed to
identify causal connections between BDAC, GI, GSC Integration, and GSC
Performance. Grounded in the Resource-Based View (RBV) and Dynamic Capability
Theory (DCT), the study investigates how data-driven capabilities foster innovation
and sustainability performance (Barney, 1991; Teece, 2007).

Primary data were collected through self-administered online questionnaires, while
secondary data were sourced from published studies and reports (Saunders et al.,
2019). The survey consisted of two sections: demographic information and construct-
related items measured on a five-point Likert scale (1 = Strongly Disagree to 5 =
Strongly Agree). The target population included industrial professionals utilizing BDAC
in manufacturing firms across Pakistan. A total of 129 valid responses were obtained
from participants of varied managerial levels, firm sizes (SECP, 2022), educational
backgrounds, and experience. SPSS (version 22) confirmed the adequacy of this
sample size for hypothesis testing (Hair et al., 2021).

A purposive sampling method was adopted for its cost-effectiveness and accessibility
(Etikan et al., 2016). Questionnaire items were adapted from validated literature to
ensure construct reliability (Podsakoff et al., 2003).

Data analysis was conducted using SPSS and SmartPLS. SPSS was used for descriptive
and demographic analysis, while SmartPLS facilitated validity, reliability, and structural
assessments through Partial Least Squares Structural Equation Modeling (PLS-SEM). This
integrated approach ensures methodological rigor and empirical precision in
evaluating how BDAC influences green innovation and supply chain performance.

DATA ANALYSIS

Initially, researchers conducted data screening to ensure accuracy and reliability
before analysis. The process involved cleaning and validating the dataset using SPSS.
Out-of-range values were checked and corrected, with none found beyond
acceptable limits. Since the data were collected through an online survey that
required all fields to be completed before submission, missing values were minimal.
Researchers then examined univariate and multivariate outliers using Z-scores (+3.29)
and Mahalanobis distance with chi-square criteria (Tabachnick & Fidell, 2007). Six
univariate and three multivariate outliers were identified and removed, resulting in a
clean and reliable dataset for further analysis.

DEMOGRAPHIC ANALYSIS

Table 1.

Demographic Analysis
Demographics Items Frequency Percentage
Education
Undergraduate 33 25.6%
Graduate 30 23.3%
Masters 58 45.0%
Others 8 6.2%

Management Levels
First-Line Supervisor 14 10.9%
Middle Management 79 61.2%
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Top Level Management 36 27.9%
Experience
Less than 5 years 44 34.1%
Between 5 - 10 years 53 N.1%
More than 10 years 32 24.8%
Industry Type
Textile 20 16.8%
Energy & Power 12 10.1%
Petroleum / Chemical 11 9.2%
Steel Making 7 5.9%
Pharmaceutical 18 15.1%
Automotive 13 10.9%
Food and/ or Beverages 4 3.4%
Electronics Manufacturing 7 5.9%
Beauty & Well Being 5 4.2%
Home Care / Personal Care 8 6.7%
Others 24 18.6%
Firm Size (As per SECP 2022)

Small (Turnover not exceeding Rs.150 27 20.9%
million)

Medium (Turnover greater than Rs.150 68 52.7%
million but not exceeding Rs.800 million)

Large (Turnover above Rs.800 million) 34 26.4%
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The table summarizes key quantitative attributes of the study’s variables: Education,
Management Level, Experience, Industry Type, and Firm Size. A total of 129 valid
responses were collected, slightly below the recommended sample size of 137 (Daniel
Sooper’s calculator). Most respondents held a Master’'s degree (45%), followed by
undergraduate (23.3%) and graduate degrees (25.6%), while 6.2% had other
qualifications. Regarding experience, 41.1% had 5-10 years, 34.1% had less than 5
years, and 24.8% had over 10 years. Industry-wise, textiles (20.9%), pharmaceuticals
(15.1%), and energy & power (10.1%) were the top sectors. Most respondents (62.7%)
represented medium-sized firms, followed by large (26.4%) and small (20.9%) firms.

DATA ANALYSIS

Data analysis was performed using responses from 129 fully completed online
questionnaires, with no missing or excluded data, ensuring a complete and reliable
dataset. Exploratory analysis was conducted using SmartPLS 3.0, based on a research
model comprising four constructs and 27 items. Data reliability was tested through
Cronbach’s Alpha, with acceptable values ranging between 0.6 and 0.9, confirming
internal consistency. Discriminant validity was then assessed to ensure that the
constructs measured were conceptually distinct, following the framework introduced
by Campbell (1959). This evaluation involved three key methods: Cross Loadings,
Fornell-Larcker Criterion, and Heterotrait-Monotrait (HTMT) Ratio.

Construct Validity

Table 2.
Result of reliability analysis
Cronbach's Composite Average Variance
Variables ltems Alpha Reliability Extracted
(Rho_c)

Big Data Analytics Capabilities (BDAC) 6 0.820 0.881 0.649
Green Innovation (Gl) 5 0.870 0.907 0.661
Green Supply Chain Integration (GSCI) 11 0.916 0.931 0.629
Green Supply Chain Performance 5 0.878 0.911 0.673

(GscP)

Theretotstity—testomms—to—ossess—Hre—rrermretcomsistereyoftHereseorctr—certer—o—
determine reliability, we employed Cronbach's alpha as a measure of data reliability.
Reliability analysis is commonly used to rigorously evaluate data consistency and the
test's capability to measure consistently. In this study, we utilized Cronbach's alpha
extensively to assess the reliability of the research variables.

Hence, Cronbach's alpha serves as a vital indicator of reliability, and the assessment
of its value is of paramount significance (Tavakol and Dennick, 2011). Cronbach's
alpha ranges between 0 and 1, and there is no strict lower threshold for the
coefficient. The closest value to 1.0 indicates the highest level of reliability, while values
below 0.5 are considered unacceptable (Gliem and Gliem, 2003). In our research
study, the Cronbach's alpha values range from 0.779 to 0.897, all of which meet the
established reliability criteria, allowing the data to be utilized for further analyses.

Outer Loading

Convergent validity, within the context of factor analysis, pertains to the statistical
validity of the relationship or coherence among items, indicating the extent to which
they collectively represent the underlying construct. Convergent validity is typically
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assessed through the average variance extracted (AVE), as advocated by Fornell
and Larckerin 1981. According to established criteria, the AVE should surpass 0.5, and
the composite reliability should exceed 0.7 (Hamid, Sami, and Sidek, 2017). The
outcomes of the convergent validity analysis are presented below :

Table 3.
Outer loading

BDAC Gl GSClI GSCP
BDAC3 0.795
BDAC4 0.827
BDACS5 0.840
BDAC6 0.758
GI1 0.782
Gl2 0.841
GI3 0.858
Gl4 0.873
Gl5 0.700
GSCI10 0.783
GSCI1 0.761
GSCl4 0.799
GSCI5 0.774
GSClé 0.831
GSCI7 0.802
GSCI8 0.800
GSCI9 0.792
GSCP1 0.755
GSCP2 0.820
GSCP3 0.848
GSCP4 0.856
GSCP5 0.819

Discriminant Validity

Discriminant validity is the process by which the items or variables are assessed based
on their ability to differentiate one construct from another, especially when those
constructs are closely related within the research model (Michalos, 2014). Discriminant
validity comprises three components, with the first part being referred to as cross-
loading, the second part as Fornell-Larcker, and the final part involving the Heterofrait
and Monoftrait (HTMT) ratio. In our research study, we exclusively applied the last two
components.

Discriminant Validity Using Fornell-Larcker:

In the Fornell-Larcker table, the diagonal values should be greater than the
corresponding values in their respective columns, and the main diagonal values
should be greater than 0.7. In the presented table, the first stage of discriminant
validity has been successfully achieved, as evident from the provided values.

Table 4.
Discriminant Validity (Fornell-Larcker Criterion)
BDAC e]] GsClI GSCP
BDAC 0.806
Gl 0.636 0.813
GSClI 0.406 0.444 0.793
GSCP 0.584 0.685 0.508 0.820
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HeterotraitMonotrait (HTMT) Ratio:

Previous studies have demonstrated discriminant validity with Heterotrait-Monoftrait
(HTMT) ratios of 0.85 and 0.90 in their models. However, standards have been adjusted,
and the threshold is now set at or below 0.85. To measure discriminant validity, the
Heterotfrait-Monotrait (HTMT) method, a factor correlation technique (Henseler,
Hubona, & Ray, 2016), is used, and it should be significantly less than 1. In our research,
the discriminant validity meets the HTMT criteria. The outcomes of discriminant validity
are mentioned below.

Table 5.
HeterotraitMonotrait (HTMT) Ratio
BDAC Gl GSCI GSCP
BDAC
Gl 0.750
GSCI 0.455 0.493
GSCP 0.681 0.781 0.554

R Square and Q Square

After model validation, predictive relevance was assessed using R? and Q? values as
suggested by Henseler et al. (2009). Using the blindfolding procedure in SmartPLS, Q2
values above 0.00 confirmed model predictability. The results showed R? values of
0.446 for Green Innovation (Gl), 0.165 for Green Supply Chain (GSC) Integration, and
0.545 for GSC Performance (GSCP). Corresponding Q2 values were 0.385, 0.129, and
0.325, respectively, indicating that all dependent constructs demonstrate satisfactory
predictive relevance.

Table 6.

Predictive Relevance of the Model
Dependent Variables R-Square Q-Square
Green Innovation (Gl) 0.446 0.385
Green Supply Chain Integration (GSCI) 0.165 0.129
Green Supply Chain Performance (GSCP) 0.545 0.325

Hypotheses testing using SEM

Hypotheses were tested using SEM with the bootstrapping method of 5,000 samples
(Hair Jr et al., 2016). BDAC was the exogenous variable, while Gl, GSC Integration,
and GSC Performance were endogenous variables. Relationships were assessed
through path coefficients (B), p-values, and t-statistics, with significance at p <0.05
and t 2= 2 (Ifinedo, 2011; Eckblad, 1991). As shown in Table 4.7, all hypothesized
relationships were significant, supporting the proposed model.

Table 7.

Path coefficients
Number Hypothesis Estimation T Statistics P Decision

B Values

H1 BDAC — Gl 0.546 7.248 0.000 Accepted
H2 BDAC — GSCI 0.406 3.957 0.000 Accepted
H3 BDAC — GSCP 0.203 2212 0.027 Accepted
H4 Gl — GSCP 0.457 4985 0.000 Accepted
H5 GSCl — Gl 0.222 2.323 0.020 Accepted

Hé GSClI  — GSCP 0.222 2.557 0.011 Accepted
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A path coefficient (B) indicates the strength and direction of the relationship among
variables. A positive B signifies a direct relationship, whereas a negative p denotes an
inverse association. The findings reveal that Big Data Analytics Capabilities (BDAC)
exert a significant positive influence on Green Innovation (Gl) (B =0.546,t=7.248, p =
0.000), supporting H1. This implies that a one-unit increase in BDAC enhances Gl by
0.546 units, underscoring the critical role of data-driven decision-making in promoting
green innovation within Pakistan’s industrial sector. Similarly, BDAC positively impacts
Green Supply Chain Integration (GSCI) (B = 0.406, t = 3.957, p = 0.000), supporting H2.
This relationship highlights BDAC's role in fostering coordination and collaboration
among stakeholders to strengthen GSC integration.

For H3, BDAC also shows a positive and significant effect on Green Supply Chain
Performance (GSCP) (B = 0.203, t = 2.212, p = 0.027), suggesting that data analytics
capabilities contribute to improving organizational and supply chain performance.
Green Innovation (Gl) likewise demonstrates a strong positive effect on GSCP (B =
0.457,1=4.985, p =0.000), supporting H4 and indicating that innovative environmental
practices enhance efficiency, profitability, and competitive advantage across supply
chains. Moreover, GSCI significantly influences Gl (p = 0.222, t = 2.323, p = 0.020),
supporting H5 and emphasizing that effective integration with suppliers and customers
facilitates innovation by reducing process uncertainty. Finally, GSCI has a significant
positive impact on GSCP (B = 0.222, t = 2.557, p = 0.011), supporting Hé, and
demonstrating that integration across the supply chain enhances sustainability
performance and operational outcomes in the Pakistani manufacturing context.

In terms of analytical procedures, SmartPLS and SPSS were employed for hypothesis
testing and data validation. Tests such as bootstrapping, blindfolding, and the PLS
algorithm confirmed model reliability and validity. The Fornell-Larcker criterion verified
discriminant validity, and all constructs met established benchmarks. Since the
questionnaire was based on previously validated instruments, a pilot study was
deemed unnecessary. The insfrument was reviewed by both academic and industry
experts before final deployment. With 129 valid responses, the data provided strong
empirical support for the proposed model, confirming the significant role of Big Data
Analytics Capabilities in advancing Green Innovation, Supply Chain Integration, and
Sustainable Performance in Pakistan's industrial sector.

CONCLUSION AND RECOMMENDATIONS

Research Contributions

This research made a contribution to the effects of Gl, GSC Integration and GSC
performance. Results shows that BDAC has significance and positive impact on Gl,
GSC Integration and GSC Performance in Pakistan. Gl and GSC Integration also have
significance and positive impact on GSC Performance in Pakistan. GSC integration
also has significance and positive impact of Gl which means there is a strong
relationship exist between the Gl and GSC integration. As the level of BDAC increases,
the application of green innovation is correspondingly enhanced, leading to
improved SC performance and overall sustainability performance

RECOMMENDATIONS

It is recommended based onresearch's findings that BDACs have significant effect on
Gl, GSC integration and GSC performance. Conduct further empirical research to
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investigate the specific mechanisms through which BDACs influence GIl, GSC
integration, and GSC performance. This could include case studies, longitudinal
studies, and cross-national comparisons. Investigate the impact of BDACs on various
aspects of sustainable performance, such as resource efficiency, environmental
impact, and social responsibility. Examine the potential of BDACs to support the
development of circular economy models in manufacturing sectors. Identify key
performance indicators (KPIs) for measuring the success of BDAC implementation in
manufacturing firms. Conduct research to identify the factors that influence the
adoption of BDACs by different types of manufacturing firms, such as size, industry,
and location. Investigate the potential of emerging technologies, such as artificial
intelligence (Al) and the Internet of Things (loT), to enhance the capabilities of BDACS:.
Conduct research to identify the impact of BDACs on job creation and economic
growth in manufacturing sectors. Considering the dynamic nature of technology, the
thesis recommends ongoing investments in research and development to stay
abreast of emerging trends and advancements in big data analytics technologies
applicable to green supply chain practices. In line with the global nature of supply
chains, further research is recommended to explore the applicability of the study's
findings in diverse international contexts, contributing to the generalizability and
transferability of knowledge beyond the confines of Pakistan's manufacturing sector.

RESEARCH LIMITATION

The research's findings were based on Pakistan only so the information collection was
limited to Pakistani sectors. The findings cannot be applied outside of Pakistan.

The research's findings were limited to the variable i.e., Big Data Analytics Capabilities
(BDAC). Various contingent factors might be present that can influence these effects,
including firms learning capabilities, firms' flexibility, external pressures, and firms’
ambidexterity. Investigating the possible roles of these moderators in the relationship
between BDAC and supply chain visibility (SCV) could be a worthwhile avenue of
exploration.

FUTURE RECOMMENDATION

The research's findings might be helpful in Green Supply Chain Performance (GSCP)
in future research. Research limitation was mentioned in section 5.3 can be explored
in upcoming study. This research work proposes that future studies consider the
examination of additional constructs, such as risk management within green SC, the
cultivation of green firms culture, and the dissemination of green knowledge etc.
Further factors that impact on can be studied later. Increase sample size and different
respondent to assess model hypothesis in forthcoming research. Qualitative study can
be used to perform research. Others model can be used to conduct research in
future.
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