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This research delves into the impact of Big Data Analytics Capabilities 

(BDAC) on the performance of green supply chains in Pakistan. The 

investigation relies on primary data obtained from the manufacturing 

sectors, utilizing a sample size of 129 for the final analysis. Structural 

equation modeling (SEM) through SmartPLS 4 was employed for data 

analysis. The findings reveal a statistically significant and positive 

correlation between BDAC and Green Innovation (GI), Green Supply 

Chain Integration (GSCI), and Green Supply Chain Performance 

(GSCP). Notably, the study underscores the more pronounced 

impact of BDAC on Green Innovation compared to its effects on 

Green Supply Chain Integration and Performance. Several limitations 

were encountered during the study, including reliance on a 

questionnaire for primary data collection, the utilization of cross-

sectional data, and the focus on a singular context within one 

country. Despite these constraints, the results offer valuable insights 

for stakeholders and policymakers in Pakistan's manufacturing sector, 

supporting effective management of organizational competencies 

related to big data analytics to enhance both green innovation and 

green supply chain performance. 
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INTRODUCTION 

Over the past two decades, the global business landscape has undergone profound 

transformation. Rapid globalization, digitalization, and sustainability imperatives have 

compelled organizations to strategically utilize their resources to improve 

performance in increasingly volatile and dynamic markets (Cao & Zhang, 2011). 

Today’s firms operate within environments characterized by high uncertainty, 

technological disruption, and environmental consciousness. As a result, the traditional 

focus on profitability and operational efficiency has evolved toward incorporating 

ecological and social sustainability. Increasing stakeholder pressure—emanating from 

governments, customers, competitors, and activist groups—has forced companies to 

adopt environmentally responsible practices and reconfigure their supply chain 

structures to meet sustainability demands (Chang, 2011; Yang & Lin, 2020). 

Consequently, environmental sustainability has emerged as a decisive factor 

influencing corporate competitiveness and long-term viability. This shift in corporate 

strategy has given rise to Green Supply Chain (GSC) practices and Green Innovation 

(GI), which emphasize balancing economic performance with ecological 

responsibility (Sun & Sun, 2021). Green Supply Chain Integration (GSCI) and GI have 

become essential mechanisms through which firms mitigate environmental impacts 

while maintaining operational efficiency and profitability. Supply chain sustainability 

has further demonstrated its potential to generate customer value by strengthening 

inter-firm linkages among suppliers, distributors, and consumers. These linkages 
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facilitate resource sharing, enhance responsiveness, and promote financial benefits 

through coordinated sustainability initiatives (Aviles-Gonzalez et al., 2017). Moreover, 

such strategic alignment fosters the creation of novel competitive advantages by 

embedding environmental responsibility into the core business model (Jajja et al., 

2018). Organizations increasingly recognize the green supply chain as a source of 

competitive advantage. Achieving this advantage requires strategic commitment, 

collaboration with supply chain partners, and continuous innovation. Research 

highlights that Big Data Analytics Capabilities (BDAC) have emerged as a critical 

enabler of these goals (Mani et al., 2017; Lamba et al., 2019; Al-Khatib et al., 2022). 

The ability to collect, process, and interpret large volumes of data empowers 

organizations to make informed decisions, optimize resource use, and identify areas 

for environmental improvement. BDAC thus represent a transformative tool for 

achieving both operational excellence and ecological sustainability. 

However, the globalized supply chain landscape has also become increasingly 

complex. Factors such as shortened product lifecycles, heightened customer 

expectations, rapid technological changes, and dynamic market conditions have 

introduced significant challenges to maintaining supply chain efficiency (Fazlollahi & 

Franke, 2018). In this context, innovation and adaptability have become 

indispensable capabilities. Green Innovation (GI), defined as the development and 

implementation of environmentally friendly products, services, and processes, is now 

considered a strategic pathway to achieving sustainable competitiveness (Lisi et al., 

2020). BDAC play a vital role in enabling GI by providing insights into supplier selection 

(Lamba et al., 2019), designing optimal sales networks (Al-Khatib & Ahmed, 2022), and 

enhancing innovation processes (Yildizbasi & Arioz, 2022; Bhatti et al., 2022; Centobelli 

et al., 2022). These capabilities allow firms to derive actionable intelligence, minimize 

waste, and create value-driven innovations that improve overall GSC effectiveness. 

Despite these benefits, integrating GI within the structure of GSCs remains a complex 

endeavor. Managerial, organizational, and technical challenges often hinder the 

seamless implementation of green initiatives (Burki, 2018; Song et al., 2019). Achieving 

effective green innovation requires alignment across departments, technological 

readiness, and cultural adaptation—factors that are not always present in developing 

economies. Understanding the antecedents that foster GI and GSCI is therefore 

essential for both theoretical advancement and practical implementation. 

GSC Integration (GSCI) has attracted considerable attention from scholars and 

practitioners as a key determinant of environmental collaboration and operational 

synergy (Lo et al., 2018; Benzidia et al., 2021; Kong et al., 2021; Xi et al., 2022). GSCI 

reflects the extent to which firms incorporate environmental objectives within their 

supply chain relationships, fostering alignment among partners to jointly address 

ecological challenges (Yang et al., 2020). Previous research has largely examined the 

organizational and inter-firm characteristics influencing GSCI (Afum et al., 2020; Cai et 

al., 2020; Wang et al., 2018; Wang & Feng, 2022). However, limited empirical studies 

have explored BDAC as a critical antecedent of GSCI (Benzidia et al., 2021; Shafique 

et al., 2018). Given that BDAC enhance visibility, coordination, and decision-making, 

it is plausible that they play an essential role in deepening GSCI and fostering overall 

supply chain sustainability (Brinch, 2018; Gang et al., 2016). Recent studies underscore 

BDAC as a foundation for intelligent decision-making and innovation in sustainable 

operations. By uncovering hidden patterns and trends, BDAC improve operational 

efficiency, reduce waste, and enhance environmental performance (Pawar & Paluri, 

2022; Al-Khatib & Shuhaiber, 2022). These analytical capabilities facilitate real-time 
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monitoring of emissions, resource utilization, and logistics, leading to smarter and 

greener supply chain practices (Sarkis et al., 2017; Zhang et al., 2018; Govindan et al., 

2015). BDAC not only improve operational performance but also foster innovation, 

compliance with environmental regulations, and transitions toward circular economy 

models (Davenport & Harris, 2007; Chae & Olson, 2015; Peng et al., 2019; Preston et 

al., 2019; Zhou et al., 2019). 

In the context of Pakistan, sustainability has gained increasing attention due to 

industrial growth, resource constraints, and rising environmental concerns. 

Manufacturers and corporations are increasingly acknowledging the importance of 

adopting green practices to reduce ecological footprints and ensure long-term 

viability (Awan et al., 2022). BDAC offer Pakistani firms an opportunity to harness data 

for improved decision-making, foster innovation, and strengthen environmental 

performance (Waqas & Tan, 2023). Despite this potential, challenges remain 

regarding data infrastructure, standardization, and analytics competencies. The 

integration of BDAC into GSC frameworks is often hindered by inadequate 

infrastructure, lack of standardized sustainability metrics, and limited human expertise 

(Iqbal et al., 2018; Ahmad et al., 2019; Mishra et al., 2018; Gligor et al., 2019). 

Scholars have identified several gaps in the literature that warrant deeper exploration. 

These include the absence of comprehensive predictive models to assess 

environmental impacts (Ivanov, 2018), limited cost-benefit analyses of BDAC for 

sustainable operations (Kusi-Sarpong et al., 2016), and insufficient research on real-

time decision support systems (Ivanov, 2020). Additionally, there is a need to examine 

BDAC’s role in enhancing supply chain resilience amid environmental disruptions 

(Ivanov & Dolgui, 2020) and ensuring compliance with evolving regulatory standards 

(Gungor & Gupta, 2019). While technologies such as IoT and blockchain offer new 

opportunities for integration with BDAC, research on their combined implications for 

GSC performance remains scarce (Min et al., 2020; Chae & Olson, 2017). Issues of 

data quality, reliability, and visibility within green supply chains also remain unresolved 

(Kannan et al., 2016; Jayaraman & Luo, 2019; Govindan et al., 2020). Furthermore, the 

adoption of BDAC among small and medium enterprises (SMEs) presents unique 

challenges due to limited financial and technical resources (Dubey et al., 2019). 

In light of these limitations, there exists a pressing need to examine how BDAC 

influence GI, GSCI, and overall GSC performance, particularly in developing 

economies like Pakistan. The current body of research provides insufficient insight into 

the interconnections among these variables and their combined implications for 

sustainability. This study addresses this critical gap by investigating the impact of BDAC 

on GI and GSCI, and their subsequent effects on GSC performance. 

Grounded in the Resource-Based View (RBV) and Dynamic Capability Theory (DCT), 

this research posits that BDAC act as valuable, rare, and inimitable resources that 

enhance organizational adaptability and innovation (Barney, 1991; Teece, 2007). 

These capabilities enable firms to integrate sustainability within strategic decision-

making, thereby fostering long-term competitive advantage. The study aims to 

contribute theoretically by expanding understanding of BDAC’s role in sustainable 

supply chain management, and practically by providing empirical evidence to guide 

managers and policymakers in Pakistan. The findings are expected to offer insights 

into how firms can strategically invest in data analytics to drive green innovation, 

strengthen supply chain integration, and improve environmental performance. By 

bridging the existing knowledge gap, this research aspires to support both academic 
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scholarship and industrial transformation toward sustainable business practices. For 

policymakers and practitioners in Pakistan, the study provides actionable directions 

for leveraging BDAC to achieve environmental stewardship, enhance 

competitiveness, and contribute to sustainable economic growth (Awan et al., 2022). 

LITERATURE REVIEW 

Theoretical Background 

The Resource-Based Theory (RBT) and the Dynamic Capability Theory (DCT) together 

provide the theoretical foundation for this study. According to RBT, a firm’s ability to 

achieve superior performance depends on how effectively it acquires, develops, and 

utilizes valuable, rare, inimitable, and non-substitutable (VRIN) resources (Barney, 

1991). The theory emphasizes that organizations possess heterogeneous resources—

tangible and intangible—that determine their competitiveness and long-term 

sustainability. In the context of Industry 4.0, firms combine organizational, human, and 

technological competencies to enhance productivity, reduce costs, and drive 

innovation (Al-Khatib, 2022a, b). These competencies illustrate RBT’s central premise 

that effective resource orchestration enables firms to transform capabilities into 

strategic advantages. 

RBT highlights the importance of identifying and leveraging core competencies that 

provide a unique edge (Lee et al., 2017; Al-Rakhami et al., 2021). Resources can be 

categorized as tangible assets (e.g., data systems, infrastructure, and analytical 

technologies), intangible assets (e.g., organizational learning and data-driven 

culture), human skills (technical and managerial), and organizational capabilities 

(e.g., innovation and supply chain management). When integrated effectively, these 

resources foster sustainable competitive advantage by enabling innovation and 

operational excellence (Amaya et al., 2022). However, RBT’s limitation lies in its 

relatively static view of resources, as it does not fully address how firms adapt and 

reconfigure them in dynamic environments. 

The Dynamic Capability Theory (DCT) extends RBT by emphasizing a firm’s ability to 

integrate, build, and reconfigure competencies to address rapidly changing 

environments (Teece et al., 1997; Eisenhardt & Martin, 2000). It focuses on sensing 

opportunities, seizing them through innovation, and transforming existing resources to 

maintain competitiveness. DCT is particularly relevant in contexts characterized by 

technological disruption, globalization, and environmental uncertainty, where 

adaptability becomes a critical success factor (Shan et al., 2019). Firms with strong 

dynamic capabilities can better identify emerging risks and opportunities, innovate 

proactively, and sustain performance advantages (Ambrosini & Bowman, 2009; Helfat 

& Peteraf, 2009; Zhou et al., 2016). 

Innovation and learning form the core of dynamic capabilities. Organizations that 

continuously acquire and apply new knowledge are better positioned to refine 

processes, develop new products, and respond to environmental challenges (Babu 

et al., 2021). DCT also provides strategic guidance for resource allocation, ensuring 

investments are directed toward activities that align with changing market and 

sustainability demands. In contrast to RBT’s focus on resource possession, DCT 

emphasizes renewal and transformation—making it essential for firms operating in fast-

changing and sustainability-driven industries. 
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Together, RBT and DCT offer a comprehensive framework for understanding how Big 

Data Analytics Capabilities (BDAC) can drive Green Innovation (GI), Green Supply 

Chain Integration (GSCI), and performance. RBT explains how BDAC act as strategic 

resources, while DCT elucidates how firms can dynamically leverage and reconfigure 

these capabilities to foster innovation, adaptability, and sustainable competitive 

advantage. 

HYPOTHESIS DEVELOPMENT 

Big Data Analytics Capabilities Positively Affect Green Innovation 

Green Innovation (GI) includes all environmentally oriented advancements in 

products, services, or processes that mitigate ecological harm and optimize resource 

use (Elias, 2020). Rooted in the Natural Resource-Based View (NRBV), GI enhances 

strategic competence and fosters sustainable value creation (Hart, 1995; Hart & 

Dowell, 2011; Arranz et al., 2020). Recent studies affirm that Big Data Analytics 

Capabilities (BDAC) enhance GI by providing real-time insights, enabling data-driven 

innovation, and supporting ecological initiatives (Mani et al., 2017; Imran et al., 2021; 

Waqas et al., 2021; Dong et al., 2022; Mavi & Mavi, 2021). BDAC empower firms to 

identify patterns, improve forecasting, and translate environmental data into 

actionable innovation strategies (Bag et al., 2020; Arici et al., 2022). 

H1: Big Data Analytics Capabilities positively affect Green Innovation. 

Big Data Analytics Capabilities Positively Relate to Green Supply Chain 

Integration 

BDAC facilitate environmentally sustainable operations by enabling data-driven 

integration across the supply chain (Benzidia et al., 2021; Song et al., 2017). Grounded 

in the Overarching Integrated Process Team (OIPT) framework, BDAC enhance green 

supplier, internal, and customer integration by improving data quality, 

communication, and responsiveness (Ashaari et al., 2021; Chen et al., 2015; Galbraith, 

1974; Bahrami & Shokouhyar, 2021; Brinch, 2018). Prior studies highlight BDAC’s role in 

reducing uncertainty and strengthening collaboration (Cai et al., 2020; Razaghi & 

Shokouhyar, 2021; Wong et al., 2020; Wu, 2013; Baah et al., 2021; Kong et al., 2021; 

Yang et al., 2021). 

H2: Big Data Analytics Capabilities positively relate to Green Supply Chain Integration. 

Big Data Analytics Capabilities Positively Affect Green Supply Chain 

Performance 

Green Supply Chain (GSC) performance integrates economic, environmental, and 

operational efficiency (Peng et al., 2020). BDAC enhance GSC performance by 

improving forecasting, optimizing logistics, and minimizing ecological impact 

(Wamba et al., 2017; Dubey et al., 2020; Sharma et al., 2022). By leveraging 

technological, human, and organizational resources, BDAC refine decision-making 

and strengthen collaboration (Gunasekaran et al., 2017; Lee & Mangalaraj, 2022; 

Nguyen et al., 2018). They also reduce material waste, improve supply-demand 

alignment, and predict environmental risks (Lee, 2017; Seyedan & Mafakheri, 2020; 

Wang et al., 2016; Papadopoulos et al., 2017; Belhadi et al., 2021). 

H3: Big Data Analytics Capabilities positively affect Green Supply Chain Performance. 

Green Innovation Positively Affects Green Supply Chain Performance 

Green Innovation (GI) enhances sustainable supply chain practices by improving 

production, purchasing, and distribution efficiency (Junaid et al., 2022). Studies show 
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GI strengthens GSC performance through eco-innovation, R&D, and collaboration 

(Bag et al., 2022; Fernando et al., 2019; Rodríguez-González et al., 2022). GI enables 

knowledge sharing, trust, and learning among supply chain partners, reducing waste 

and enhancing adaptability (Lisi et al., 2020; Kong et al., 2020; Seman et al., 2012). 

Consistent with NRBV, GI drives superior outcomes and long-term competitiveness 

(Wong et al., 2020; Wu, 2013). 

H4: Green Innovation positively affects Green Supply Chain Performance. 

Green Supply Chain Integration Positively Relates to Green Innovation 

Knowledge sharing and collaboration with suppliers and customers accelerate Green 

Innovation (Wong et al., 2011; Zhao et al., 2018). Green Supply Chain Integration 

(GSCI) improves knowledge flow, resolves conflicts, and supports eco-friendly design 

(Koufteros et al., 2005; Lau et al., 2010; Wong et al., 2020; Song et al., 2018). Supplier 

collaboration fosters environmental learning, data processing, and co-creation, 

driving Green Product Development Innovation (Qu & Liu, 2022; Pham & Pham, 2021; 

Freije et al., 2021; Junaid et al., 2022). 

H5: Green Supply Chain Integration positively relates to Green Innovation. 

Green Supply Chain Integration Positively Relates to Green Supply Chain 

Performance 

Grounded in the relational view, Supply Chain Integration (SCI) enhances 

collaboration and competitive advantage (Jajja et al., 2018). Internal, supplier, and 

customer integration improve coordination, forecasting, and product quality (Flynn et 

al., 2010; Qi et al., 2017; Huo et al., 2016; Ni & Sun, 2019; Wang & Zhang, 2019). Supplier 

integration strengthens productivity, reduces costs, and supports innovation (Khanuja 

& Jain, 2019; Shou et al., 2018; Kim & Chai, 2016; Seo et al., 2014). Collectively, these 

integrations improve GSC efficiency and responsiveness. 

H6: Green Supply Chain Integration positively relates to Green Supply Chain 

Performance 

CONCEPTUAL FRAMEWORK 

 

RESEARCH METHODOLOGY 

This study adopts a quantitative approach aligned with prior comparative research 

to examine relationships among Big Data Analytics Capabilities (BDAC), Green 

Innovation (GI), Green Supply Chain (GSC) Integration, and GSC Performance. 

Statistical and mathematical analyses, including regression and measures of central 
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tendency, were used to validate relationships and ensure reliability (Creswell & 

Creswell, 2018; Hair et al., 2021). An explanatory research design was employed to 

identify causal connections between BDAC, GI, GSC Integration, and GSC 

Performance. Grounded in the Resource-Based View (RBV) and Dynamic Capability 

Theory (DCT), the study investigates how data-driven capabilities foster innovation 

and sustainability performance (Barney, 1991; Teece, 2007). 

Primary data were collected through self-administered online questionnaires, while 

secondary data were sourced from published studies and reports (Saunders et al., 

2019). The survey consisted of two sections: demographic information and construct-

related items measured on a five-point Likert scale (1 = Strongly Disagree to 5 = 

Strongly Agree). The target population included industrial professionals utilizing BDAC 

in manufacturing firms across Pakistan. A total of 129 valid responses were obtained 

from participants of varied managerial levels, firm sizes (SECP, 2022), educational 

backgrounds, and experience. SPSS (version 22) confirmed the adequacy of this 

sample size for hypothesis testing (Hair et al., 2021). 

A purposive sampling method was adopted for its cost-effectiveness and accessibility 

(Etikan et al., 2016). Questionnaire items were adapted from validated literature to 

ensure construct reliability (Podsakoff et al., 2003). 

Data analysis was conducted using SPSS and SmartPLS. SPSS was used for descriptive 

and demographic analysis, while SmartPLS facilitated validity, reliability, and structural 

assessments through Partial Least Squares Structural Equation Modeling (PLS-SEM). This 

integrated approach ensures methodological rigor and empirical precision in 

evaluating how BDAC influences green innovation and supply chain performance. 

DATA ANALYSIS 

Initially, researchers conducted data screening to ensure accuracy and reliability 

before analysis. The process involved cleaning and validating the dataset using SPSS. 

Out-of-range values were checked and corrected, with none found beyond 

acceptable limits. Since the data were collected through an online survey that 

required all fields to be completed before submission, missing values were minimal. 

Researchers then examined univariate and multivariate outliers using Z-scores (±3.29) 

and Mahalanobis distance with chi-square criteria (Tabachnick & Fidell, 2007). Six 

univariate and three multivariate outliers were identified and removed, resulting in a 

clean and reliable dataset for further analysis. 

DEMOGRAPHIC ANALYSIS 

Table 1. 

Demographic Analysis 
Demographics Items Frequency Percentage 

Education   

Undergraduate 33 25.6% 

Graduate 30 23.3% 

Masters 

Others  

58 

8 

45.0% 

6.2% 

Management Levels   

First-Line Supervisor 14 10.9% 

Middle Management 79 61.2% 
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Top Level Management 36 27.9% 

Experience   

Less than 5 years 44 34.1% 

Between 5 – 10 years 53 41.1% 

More than 10 years 32 24.8% 

Industry Type   

Textile 20 16.8% 

Energy & Power 12 10.1% 

Petroleum / Chemical 11 9.2% 

Steel Making 7 5.9% 

Pharmaceutical 18 15.1% 

Automotive 13 10.9% 

Food and/ or Beverages 4 3.4% 

Electronics Manufacturing 7 5.9% 

Beauty & Well Being 5 4.2% 

Home Care / Personal Care 8 6.7% 

Others 24 18.6% 

Firm Size (As per SECP 2022)   

Small (Turnover not exceeding Rs.150 

million) 

27 20.9% 

Medium (Turnover greater than Rs.150 

million but not exceeding Rs.800 million) 

68 52.7% 

Large (Turnover above Rs.800 million) 34 26.4% 
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The table summarizes key quantitative attributes of the study’s variables: Education, 

Management Level, Experience, Industry Type, and Firm Size. A total of 129 valid 

responses were collected, slightly below the recommended sample size of 137 (Daniel 

Sooper’s calculator). Most respondents held a Master’s degree (45%), followed by 

undergraduate (23.3%) and graduate degrees (25.6%), while 6.2% had other 

qualifications. Regarding experience, 41.1% had 5–10 years, 34.1% had less than 5 

years, and 24.8% had over 10 years. Industry-wise, textiles (20.9%), pharmaceuticals 

(15.1%), and energy & power (10.1%) were the top sectors. Most respondents (62.7%) 

represented medium-sized firms, followed by large (26.4%) and small (20.9%) firms. 

DATA ANALYSIS 

Data analysis was performed using responses from 129 fully completed online 

questionnaires, with no missing or excluded data, ensuring a complete and reliable 

dataset. Exploratory analysis was conducted using SmartPLS 3.0, based on a research 

model comprising four constructs and 27 items. Data reliability was tested through 

Cronbach’s Alpha, with acceptable values ranging between 0.6 and 0.9, confirming 

internal consistency. Discriminant validity was then assessed to ensure that the 

constructs measured were conceptually distinct, following the framework introduced 

by Campbell (1959). This evaluation involved three key methods: Cross Loadings, 

Fornell–Larcker Criterion, and Heterotrait–Monotrait (HTMT) Ratio. 

Construct Validity 

Table 2. 

Result of reliability analysis 
  

Variables  

 

Items 

Cronbach's 

Alpha 

Composite 

Reliability 

(Rho_c) 

Average Variance 

Extracted 

Big Data Analytics Capabilities (BDAC) 

  

6 0.820 0.881 0.649 

Green Innovation (GI) 5 0.870 0.907 0.661 

Green Supply Chain Integration (GSCI)  11 0.916 0.931 0.629 

Green Supply Chain Performance 

(GSCP)  

5 0.878 0.911 0.673 

The reliability test aims to assess the internal consistency of the research data. To 

determine reliability, we employed Cronbach's alpha as a measure of data reliability. 

Reliability analysis is commonly used to rigorously evaluate data consistency and the 

test's capability to measure consistently. In this study, we utilized Cronbach's alpha 

extensively to assess the reliability of the research variables. 

Hence, Cronbach's alpha serves as a vital indicator of reliability, and the assessment 

of its value is of paramount significance (Tavakol and Dennick, 2011). Cronbach's 

alpha ranges between 0 and 1, and there is no strict lower threshold for the 

coefficient. The closest value to 1.0 indicates the highest level of reliability, while values 

below 0.5 are considered unacceptable (Gliem and Gliem, 2003). In our research 

study, the Cronbach's alpha values range from 0.779 to 0.897, all of which meet the 

established reliability criteria, allowing the data to be utilized for further analyses. 

Outer Loading 

Convergent validity, within the context of factor analysis, pertains to the statistical 

validity of the relationship or coherence among items, indicating the extent to which 

they collectively represent the underlying construct. Convergent validity is typically 
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assessed through the average variance extracted (AVE), as advocated by Fornell 

and Larcker in 1981. According to established criteria, the AVE should surpass 0.5, and 

the composite reliability should exceed 0.7 (Hamid, Sami, and Sidek, 2017). The 

outcomes of the convergent validity analysis are presented below : 

Table 3. 

Outer loading 

  BDAC GI GSCI GSCP 

BDAC3 0.795       

BDAC4 0.827       

BDAC5 0.840       

BDAC6 0.758       

GI1   0.782     

GI2   0.841     

GI3   0.858     

GI4   0.873     

GI5 

GSCI10                                                         

   0.700  

0.783 

  

GSCI11     0.761   

GSCI4     0.799   

GSCI5     0.774   

GSCI6      0.831 
 

GSCI7      0.802 
 

GSCI8      0.800 
 

GSCI9      0.792 
 

GSCP1       0.755 

GSCP2       0.820 

GSCP3       0.848 

GSCP4       0.856 

GSCP5    0.819 

     

Discriminant Validity 

Discriminant validity is the process by which the items or variables are assessed based 

on their ability to differentiate one construct from another, especially when those 

constructs are closely related within the research model (Michalos, 2014). Discriminant 

validity comprises three components, with the first part being referred to as cross-

loading, the second part as Fornell-Larcker, and the final part involving the Heterotrait 

and Monotrait (HTMT) ratio. In our research study, we exclusively applied the last two 

components. 

Discriminant Validity Using Fornell-Larcker: 

In the Fornell-Larcker table, the diagonal values should be greater than the 

corresponding values in their respective columns, and the main diagonal values 

should be greater than 0.7. In the presented table, the first stage of discriminant 

validity has been successfully achieved, as evident from the provided values. 

Table 4. 

Discriminant Validity (Fornell-Larcker Criterion)  
   BDAC GI GSCI GSCP 

BDAC 0.806 
   

GI 0.636 0.813 
  

GSCI 0.406 0.444 0.793 
 

GSCP 0.584 0.685 0.508 0.820 
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HeterotraitMonotrait (HTMT) Ratio: 

Previous studies have demonstrated discriminant validity with Heterotrait-Monotrait 

(HTMT) ratios of 0.85 and 0.90 in their models. However, standards have been adjusted, 

and the threshold is now set at or below 0.85. To measure discriminant validity, the 

Heterotrait-Monotrait (HTMT) method, a factor correlation technique (Henseler, 

Hubona, & Ray, 2016), is used, and it should be significantly less than 1. In our research, 

the discriminant validity meets the HTMT criteria. The outcomes of discriminant validity 

are mentioned below. 

Table 5. 

HeterotraitMonotrait (HTMT) Ratio 

   BDAC GI GSCI GSCP 

BDAC 
    

GI 0.750 
   

GSCI 0.455 0.493 
  

GSCP 0.681 0.781 0.554 
 

R Square and Q Square 

After model validation, predictive relevance was assessed using R² and Q² values as 

suggested by Henseler et al. (2009). Using the blindfolding procedure in SmartPLS, Q² 

values above 0.00 confirmed model predictability. The results showed R² values of 

0.446 for Green Innovation (GI), 0.165 for Green Supply Chain (GSC) Integration, and 

0.545 for GSC Performance (GSCP). Corresponding Q² values were 0.385, 0.129, and 

0.325, respectively, indicating that all dependent constructs demonstrate satisfactory 

predictive relevance.  

Table 6. 

Predictive Relevance of the Model  
 Dependent Variables R-Square Q-Square 

Green Innovation (GI) 0.446 0.385 

Green Supply Chain Integration (GSCI) 0.165 0.129 

Green Supply Chain Performance (GSCP) 0.545  0.325  

Hypotheses testing using SEM 

Hypotheses were tested using SEM with the bootstrapping method of 5,000 samples 

(Hair Jr et al., 2016). BDAC was the exogenous variable, while GI, GSC Integration, 

and GSC Performance were endogenous variables. Relationships were assessed 

through path coefficients (β), p-values, and t-statistics, with significance at p ≤ 0.05 

and t ≥ 2 (Ifinedo, 2011; Eckblad, 1991). As shown in Table 4.7, all hypothesized 

relationships were significant, supporting the proposed model. 

Table 7. 

Path coefficients 
  Number   Hypothesis  Estimation 

β 

T Statistics P 

Values 

Decision 

  H1   BDAC   →   GI 0.546 7.248 0.000 Accepted 

  H2   BDAC   → GSCI 0.406 3.957 0.000 Accepted 

  H3   BDAC   → GSCP 0.203 2.212 0.027 Accepted 

  H4   GI          → GSCP 0.457 4.985 0.000 Accepted 

  H5   GSCI     →     GI 0.222 2.323 0.020 Accepted 

  H6   GSCI     → GSCP   0.222 2.557 0.011 Accepted 
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A path coefficient (β) indicates the strength and direction of the relationship among 

variables. A positive β signifies a direct relationship, whereas a negative β denotes an 

inverse association. The findings reveal that Big Data Analytics Capabilities (BDAC) 

exert a significant positive influence on Green Innovation (GI) (β = 0.546, t = 7.248, p = 

0.000), supporting H1. This implies that a one-unit increase in BDAC enhances GI by 

0.546 units, underscoring the critical role of data-driven decision-making in promoting 

green innovation within Pakistan’s industrial sector. Similarly, BDAC positively impacts 

Green Supply Chain Integration (GSCI) (β = 0.406, t = 3.957, p = 0.000), supporting H2. 

This relationship highlights BDAC’s role in fostering coordination and collaboration 

among stakeholders to strengthen GSC integration. 

For H3, BDAC also shows a positive and significant effect on Green Supply Chain 

Performance (GSCP) (β = 0.203, t = 2.212, p = 0.027), suggesting that data analytics 

capabilities contribute to improving organizational and supply chain performance. 

Green Innovation (GI) likewise demonstrates a strong positive effect on GSCP (β = 

0.457, t = 4.985, p = 0.000), supporting H4 and indicating that innovative environmental 

practices enhance efficiency, profitability, and competitive advantage across supply 

chains. Moreover, GSCI significantly influences GI (β = 0.222, t = 2.323, p = 0.020), 

supporting H5 and emphasizing that effective integration with suppliers and customers 

facilitates innovation by reducing process uncertainty. Finally, GSCI has a significant 

positive impact on GSCP (β = 0.222, t = 2.557, p = 0.011), supporting H6, and 

demonstrating that integration across the supply chain enhances sustainability 

performance and operational outcomes in the Pakistani manufacturing context. 

In terms of analytical procedures, SmartPLS and SPSS were employed for hypothesis 

testing and data validation. Tests such as bootstrapping, blindfolding, and the PLS 

algorithm confirmed model reliability and validity. The Fornell–Larcker criterion verified 

discriminant validity, and all constructs met established benchmarks. Since the 

questionnaire was based on previously validated instruments, a pilot study was 

deemed unnecessary. The instrument was reviewed by both academic and industry 

experts before final deployment. With 129 valid responses, the data provided strong 

empirical support for the proposed model, confirming the significant role of Big Data 

Analytics Capabilities in advancing Green Innovation, Supply Chain Integration, and 

Sustainable Performance in Pakistan’s industrial sector. 

CONCLUSION AND RECOMMENDATIONS 

Research Contributions 

This research made a contribution to the effects of GI, GSC Integration and GSC 

performance. Results shows that BDAC has significance and positive impact on GI, 

GSC Integration and GSC Performance in Pakistan. GI and GSC Integration also have 

significance and positive impact on GSC Performance in Pakistan. GSC integration 

also has significance and positive impact of GI which means there is a strong 

relationship exist between the GI and GSC integration. As the level of BDAC increases, 

the application of green innovation is correspondingly enhanced, leading to 

improved SC performance and overall sustainability performance 

RECOMMENDATIONS 

It is recommended based on research's findings that BDACs have significant effect on 

GI, GSC integration and GSC performance. Conduct further empirical research to 
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investigate the specific mechanisms through which BDACs influence GI, GSC 

integration, and GSC performance. This could include case studies, longitudinal 

studies, and cross-national comparisons. Investigate the impact of BDACs on various 

aspects of sustainable performance, such as resource efficiency, environmental 

impact, and social responsibility. Examine the potential of BDACs to support the 

development of circular economy models in manufacturing sectors. Identify key 

performance indicators (KPIs) for measuring the success of BDAC implementation in 

manufacturing firms. Conduct research to identify the factors that influence the 

adoption of BDACs by different types of manufacturing firms, such as size, industry, 

and location. Investigate the potential of emerging technologies, such as artificial 

intelligence (AI) and the Internet of Things (IoT), to enhance the capabilities of BDACs. 

Conduct research to identify the impact of BDACs on job creation and economic 

growth in manufacturing sectors. Considering the dynamic nature of technology, the 

thesis recommends ongoing investments in research and development to stay 

abreast of emerging trends and advancements in big data analytics technologies 

applicable to green supply chain practices. In line with the global nature of supply 

chains, further research is recommended to explore the applicability of the study's 

findings in diverse international contexts, contributing to the generalizability and 

transferability of knowledge beyond the confines of Pakistan's manufacturing sector. 

RESEARCH LIMITATION 

The research's findings were based on Pakistan only so the information collection was 

limited to Pakistani sectors.  The findings cannot be applied outside of Pakistan. 

The research's findings were limited to the variable i.e., Big Data Analytics Capabilities 

(BDAC). Various contingent factors might be present that can influence these effects, 

including firms learning capabilities, firms’ flexibility, external pressures, and firms’ 

ambidexterity. Investigating the possible roles of these moderators in the relationship 

between BDAC and supply chain visibility (SCV) could be a worthwhile avenue of 

exploration. 

FUTURE RECOMMENDATION 

The research's findings might be helpful in Green Supply Chain Performance (GSCP) 

in future research. Research limitation was mentioned in section 5.3 can be explored 

in upcoming study. This research work proposes that future studies consider the 

examination of additional constructs, such as risk management within green SC, the 

cultivation of green firms culture, and the dissemination of green knowledge etc. 

Further factors that impact on can be studied later. Increase sample size and different 

respondent to assess model hypothesis in forthcoming research. Qualitative study can 

be used to perform research. Others model can be used to conduct research in 

future. 
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