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Ethereum blockchain is the market leading platform for decentralized
applications and smart confracts that have powered the new age of
financial ecosystem. In order to improve security and performance,
identify influential nodes, and understand network dynamics on
Ethereum it is critical to identify influential nodes in Ethereum. This study
explore machine learning techniques for discovery of these nodes
using graph based algorithms, centrality measures and clustering
methods. It studies the impact of a node in terms of frequency of
usage, connectivity and computational power for a node. Finally, this
study compare performance of proposed methodology combining
supervised learning and graph neural networks to their traditional
counterparts and demonstrate  approach outperforms existing
methods. The study demonstrate that highly influential nodes engage
in unique patterns of behavior, which are detectable and
categorizable. This study contribute to understanding of the network
structure of Ethereum, along with a scalable approach to monitoring
and optimising blockchain ecosystems. Moreover the study discuss the
implications for network robustness, fraud detection and protocol
enhancements, and demonstrate the promise of machine learning for
blockchain analyfics.

Keywords: Ethereum, Blockchain, Machine Learning, Influential Nodes, Graph Neural Networks, Decentralized

Networks.
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INTRODUCTION

Ethereum released in 2015, the decentralized, open source blockchain with a built in
smart contract functionality, was infroduced to the world by Vitalik Buterin. Unlike
traditional blockchains, Ethereum can support programmable confracts making it the
authority platform to deploy DApps (Fawad et al., 2025). Here the structure of the
structure means that the whole blockchain is alive because all nodes collaborate to
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validate transactions, so it is very transparent and decentralized. For good reasons,
Ethereum has forever changed the blockchain ecosystem compared to its utility and
flexibility, but also its ability to support anything from financial fransactions to other use
cases. There are more nodes in a ethereum based decentralised network but some
have much more influence than others. “The study have discovered these ‘influential
nodes’ — important for keeping networks secure, stable, and efficient.” In reality, they
play an important part in fransaction propagation, consensus mechanisms, as well as
network vulnerabilities that can result in the disruption of the network (Lee et al., 2024).
Understanding such nodes is fundamental to understanding Ethereum's network
dynamics and has engineering applications of increasing resilience of the network
and uncovering fraud, as well as improve blockchain efficiency.

The need for advanced analytical tools increases for the complexity of blockchain
networks. This is how this research discovered machine learning (ML) being an
incredibly powerful tool for the analysis of complex network structures. Specifically, ML
runs techniques, such as clustering, classification and centrality analysis to better
understand node influence (Azad et al., 2024). Motivated by existing methods that fail
to detect patterns that their behavior, this study develops a new framework by using
graph based algorithms and neural networks to evaluate nodes and discover patterns
that traditional methods often overlook.

This study investigates machine learning algorithms on the possible influential nodes in
Ethereum's network. The aim of the research is to develop robust methods for key
node detection using transactional and structural data. Overall, these findings give
insight on how Ethereum works and give room for additional blockchain analytics
efforts (Kadam et al., 2024). Results presented in this paper show the potential for ML
to tackle key problems which make the scalability and security of decentralised
systems happen.

LITERATURE REVIEW

A key research area with a broad array of implications for network robustness,
performance optimization and security is the identification of influential nodes in
decentralized networks. Such influential nodes are crucial to information propagation,
to stabilizing and to achieving consensus in distributed systems (Antwi et al., 2022). In
social network, tfransportation system and computer network, researchers extensively
explored the concept of influential nodes; however, applying this concept in
blockchain network has its own challenges and opportunities that this thesis seeks to
discuss. Since blockchain systems are decentralized and transparent, analytic
methods are needed that are innovative and which can be used to find the most key
nodes effectively.

Understanding Influential Nodes

Decentralized networks need to keep the dynamics through influential nodes. In
blockchain systems, the notion of nodes that are highly connected, have high
throughput, and participate in consensus mechanisms is very common. In many
cases, their influence determines the resiience of the network to attacks, the
efficiency of fransactions processing, and, generally, network stability (Mueller-Bloch
et al., 2024). Traditional network analysis has often used measures of centrality —
degree centrality, betweenness centrality, and eigenvector centrality— to identify
those key players. This study develop understandings with reference to Barabdsi and
Albert's (1999) scale free network theory to identify influential nodes. Their theory is that
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many real world networks, particularly social and technological systems, have a scale
free structure where a small number of nodes with many connections dominate the
network. At the same time, this concept is also being extended to blockchain systems
wherein the highly active nodes are responsible to influence the transaction flow,
partficipate in consensus and ensure the network integrity (Sapini et al., 2025).

In a blockchain network, where the network is generally decentralized, these
influential nodes are especially important. Unlike centralized systems, authority is not
concentrated in blockchain networks, in which distributed nodes’ validation of
tfransactions and security relies on. In this context of identifying influential nodes can
be instrumental for improving network design, reduce risks and enhancing operation
efficiency (Alamsyah et al., 2024).

Blockchain Network Analysis

For the most part, Ethereum and other Blockchain networks are commonly modeled
as directed graphs, where nodes are accounts, and edges are transactions. Second,
the neighborhood of any node also appears to provide a useful framework in which
to investigate the relations and interactions among nodes. The Bitcoin network is sfill
the simplest model, but Ethereum'’s network becomes much more complicated by
supporting smart contracts, decentralized applications (DApps) and token standards
like ERCC20.

The blockchain network has been widely modeled using graph-theoretic
approaches. In a black box analysis of Bitcoin's network, Lin et al., (2019) used metrics
like clustering coefficients, transaction pattern and degree distribution to identify the
cenfral nodes of Bitcoin's network. However, whereas Bitcoin's network is mostly about
the transactional data, Ethereum'’s ecosystem, aside from the fransactions, brings
forth account interactions, smart contracts and tokens within its graph structure.

Chen et al., (2020) studied graph analytics in blockchain systems and found that these
have the most impact on fransaction propagation and network security; nodes with
greatest cenfrality measures have. By studying their work, they found that the
standard graph measures do not efficiently compute the temporal characteristics of
a blockchain network. This works also for the specifically present case of Ethereum,
where temporal and relational attributes of both the ever changing raw transaction
volume and also related smart contract activities need to be captured and analyzed
with new and effective analytical methods.

The deepening of the understanding of Blockchain Network has come with recent
improvements in graph theory algorithms. Researchers used clustering techniques to
tap into the network and cluster nodes which perform similar fransactional behaviors.
To identify the key nodes, and to know how important they are in keeping network
cohesion, all such insights are required.

Machine Learning in Blockchain Analytics

Machine learning (ML) has proven to disrupt traditional blockchain analytics in areas
such as blockchain scalability, fraud detection, and node classification. In confrast to
traditional approaches, depending on pre-defined metrics, ML algorithms are able to
identify hidden patterns and relationships from blockchain data (Arafat et al., 2024).
The capability to identify critical nodes in complex, and dynamic networks such as the
Ethereum network is of high value. This study applied unsupervised learning techniques
such as k-means clustering and DBSCAN to node grouping using transaction patterns
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to detect clusters of high activity or influence. For instance, nodes with analogous
transaction volumes and interaction frequencies can be banded, and the significant
players in the network can be discovered (Bello et al., 2024). However, these methods
commonly necessitate manual interpretation of cluster characteristics, limiting their
scalability in large networks.

For node classification, models from supervised learning (such as decision trees,
support vector machines (SVM) and gradient boosting algorithms) have also been
used. These models train classifiers on labeled datasets to classify nodes as influential
and non-influential nodes. However, the quality of input features and the availability
of labeled data usually limits their performance.

Graph neural networks (GNNs) are a step in the right direction for network analysis,
with a highly capable framework to learn from data where the connectivity is
encoded in the data. GNNs explicitly model node features as well as graph topology
allowing them to encode complex relationships among nodes and their neighbors.
GNNs were shown by Zhou et al., (2021) to be effective on identifying fraudulent
activities in blockchain fransactions. To test their methods’ robustness and improve
accuracy, their study combined node embeddings with transactional data and
found it to outperform traditional machine learning models in both accuracy and
robustness.

GNNs applications on identifying influential nodes on blockchain network have been
very promising. GNNs model the hierarchical and relational structure of blockchain
data through use of graph convolution and attention techniques used in GNNs (Ponzi
et al., 2025). This model can detect fine grained patterns indicating a node's role in
transaction propagation or consensus collaboration among other.

Challenges and Research Gaps

Although the progress so far has been made, many gaps sfill exist in applying machine
learning to node analysis for the Ethereum blockchain. Most present studies focus on
the bulk of fraud detection and anomaly detection, forgetting the wider network
dynamics of the influential node (Ehsan et al., 2024). Additionally, the wide variety of
smart contracts within Ethereum coupled with token standards make feature
extraction and model design difficult. Traditional centrality measures are useful in
understanding static structures of networks, however they fall short in capturing the
dynamic and multi-dimensional networks that make up blockchain networks. Some
of these shortcomings are alleviated by machine learning methods, in particular
GNNs, but there is still room for improvement to take in to account the specifics of the
Ethereum game. This study attempt to pair them by use of machine learning methods,
more concretely to identify influential nodes in Ethereum (Alghuried, 2025). The
research utilizes both graph based features and node specific attributes, in order to
give an overall framework for studying network dynamics. In addition to further
elucidate how Ethereum operates, this approach also provides a basis for future
blockchain analytical research.

METHODOLOGY

Methodology for the influence nodes detection in the Ethereum blockchain network
using machine learning consists of a structured sequence of data collection, feature
extraction, model selection, training and validation, and choice of evaluation metrics.
Each step is described in detail highlighting techniques and tools used to develop
accurate and valid results.
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Data Collection

This study is based on data collection with publicly available Ethereum blockchain
data from which | analyze node behavior and interactions. Thanks to Etherscan, Infura
among other APIs, Ethereum offers transparent access to its blockchain. These
platforms helps to extract many data points necessary to understand the structure
and dynamic of the network.

The dataset built for the purpose of this study spans six month period and it covers:

o Node Attributes: To understand individual node behavior, the characteristics
gathered include transaction count, frequency, smart contract deployments and
token transfers.

o Graph Structure: A graph over Ethereum accounts with directed edges,
representing transactions, was created. This graph structure exhibits relationships
between nodes, and connectivity in the network.

o Temporal Data: To allow dynamic analysis of node activity over time,
fransaction timestamps were included.

A dataset with 100,000 nodes and over 10 million tfransactions that covers the entire
space of Ethereum is this one. Quality and consistency was ensured by carrying out
data preprocessing steps which include cleaning and deduplication.

FEATURE EXTRACTION

Feature extraction is essential to identify the factors that determine how a node will
influence the Ethereum network. The identified features were also extracted to be
used as an input in machine learning models:

. Centrality Measures: The importance of a node in the network was quantified
using metrics that included degree cenftrality, closeness centrality and between
cenfrality.

o Degree Centrality: The number of direct connections a node represents
its activity level.

o Closeness Centrality: How quickly basically, you can reach other nodes,
other nodes which in how much time a person can reach other nodes reflects how
good you're at propagating information.

o Between Centrality: Records how much of a bridge a node is in the
network.
. Transaction Patterns: In order to determine the economic significance of

nodes, this study used average fransaction value, transaction frequency, and
variability in transaction size as features.

. Smart Contract Interactions: Ethereum's programmability and DApp ecosystem
was examined by analyzing the number of deployed smart contracts and interactions
to existing contracts to identify nodes that contributed to Ethereum's programmability.

. Temporal Metrics: This study conducted time series analysis to frack transaction
trends and discover patterns in which transaction activity is more or less sustained or
fluctuated over time.

This study also applied graph embedding techniques, like Node2Vec, to lower
dimensional vector space graph data. This method preserves the network topology
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and co relational information and fits in with existing machine learning algorithms.
Based on random walks and optimization techniques this study generated node
embeddings that aggregate both local and global structural properties of the
Ethereum graph.

Model Selection

Next, this study chose machine learning models that are suited to detect influential
nodes exactly. Then looked at a number of different models, including supervised and
unsupervised approaches:

. Supervised Models: During the classification analysis, Random Forest, Support
Vector Machines or SVM, Gradient Boosting were selected for the classification
analysis. Such models depend on the presence of labeled data with respect to the
influent and non-influent nodes.

. Unsupervised Models: K-means and hierarchical clustering was used to cluster
nodes together naturally through similarity in feature extraction. Compared to the
previous models, these models do not rely on labeled data but can be beneficial for
discovering networks and influential nodes’ clusters.

. Graph Neural Networks (GNNs): Because they can both incorporate node
features and graph structure, advanced graph based models such as Graph
Convolutional Networks (GCNs) and Graph Attention Networks (GATs) were chosen.

o GCNs: Convolutional operations to aggregate the information from the
node's neighbors, and thus to enable contextual learning.

o GATs: To make a node pay more attention to important nodes in the
network, it includes attention mechanisms that lend relative importance weight to the
nodes in the neighborhood.

Whilst, ultimately GNNs were used as the core modelling approach with their
capability to capture the relationships within Ethereum’s network.

Training and Validation

This study trained the machine learning models and evaluated the performance of
the models with a split of the dataset into (70%, 30%) of training and testing subsefts.
Several preprocessing and training steps were implemented:

. Data Normadalization: To achieve consistency and improve convergence of
model, features were scaled.

. Cross-Validation: To reduce overfitting and increase robustness of the model a
k-fold cross-validation approach was utilized.

. Model Training: The research implemented GNNs through the PyTorch
Geometric framework, our hyperparameters such as learning rate, dropout rate, and
number of layers being tuned via grid search.

Here the training process was about minimizing loss functions, namely, categorical
crossentropy loss for classification task. To avoid overfitting and thus to generalize to
unseen data, this study employed early stopping criteria. A GPU-accelerated
environment was used to train the models with the computational demands of large
scale graph processing.
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Evaluation Metrics

A combination of evaluation metrics were used to assess each machine learning
models’ performance:

. Precision and Recall: These metrics were computed by the model’s ability to
correctly recognise influential nodes and reduce the number of falsely positives.

o Precision: Percentage of correctly identified influential nodes among all
nodes classified as influential.

o Recall: Actual influential nodes identified by the model as a proportion
of actual present influential nodes.

. F1-Score: A harmonic mean between precision and recall, contributing to an
objective measure of model efficacy. Fl-scores that are high means that can
maintain a well-balanced precision and recall.

. Node Ranking Consistency: The machine learning models' predictions were
then validated by comparing the rankings of influential nodes produced by the
machine learning models with the rankings obtained from traditional centrality
measures. This meant that the models would follow with the well accepted standards
of network analysis.

The evaluation results showed that GNNs are able to capture complicated
relationships and locate super hubs. All metrics showed that GNN-based models
consistently outperform traditional machine learning algorithm and, therefore, are
suitable application for Ethereum network analysis.

Implementation Tools and Environment

The following tools and frameworks are also used to process, model and/or evaluate
data:

. Python Libraries: The Python data manipulation, and statistical analysis libraries
are Pandas, NumPy, and SciPy.

. Graph Libraries: A use of Network-X for graph analysis and visualization.

. Machine Learning Frameworks: Also use scikit-learn in order to implement
traditional models and PyTorch Geometric to train GNNs.

. Hardware: Efficient computation of large graph datasets by using GPU

acceleration with NVIDIA GPUs.
SUMMARY

This study adopt a methodology that combines cutting edge machine learning
algorithms and graph based analytics to find the influential nodes in the Ethereum
blockchain network. With strong dataset, deriving useful features, and applying
enhanced GNN models, the paper presented can be a scalable and accurate
framework for node analysis. The results are systematic and applicable, which helps
to better understand the Ethereum network dynamics and their optimization for future
use cases.

RESULTS AND DISCUSSION

A few important results of this work show the promise of machine learning, and more
importantly, graph models, for analyzing the Ethereum network and discovering
influential nodes. This demonstrates how various models, especially Graph Neural
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Networks (GNNs) still can capture the complexity of the decentralized Ethereum
system. This section discusses the behavior of influential nodes and broader
implications of the findings, and concludes with a discussion of model performance.

Model Perfformance

The results show that GNN can significantly outperform traditional machine learning
models. Gat's performed best (highest Accuracy and F1 score) therefore they were
selected for use with graph structured data with complex relationships between
nodes.

. Accuracy: GAT outperformed Random forest (87.2) and traditional models in
term of accuracy with 93.5%. The results of this application on the combined use of
node feature and graph structure with GAT led to enhancement in accuracy.

. F1-Score: GAT achieved a well-balanced tradeoff between precision and
recall with F1-score 0.91. In identifying influential nodes, this performance metric is
particularly critical as it guarantees correct classification and as few false positives as
possible.

Model Performance (Accuracy and Fl-Score)

_— ACCLracy
N Fl Score

Percentage (%)

Random Forest Gradient Boostng G (GAT)
Models

Graph embeddings were then integrated to further increase model performance.
With technigques like Node2Vec which captured the network’s relational structure, the
models were able to distinguish nodes based on their level of connectivity and the
associated role in the Ethereum ecosystem. The strong local and global properties of
networks were preserved in these embeddings, which enriched input features and led
to outstanding GNN performance.

Conventional models such as Support Vector Machines (SVMs) and Gradient Boosting
proved successful for certain tasks, but unable to reach the predication of GNNs nor
the scale GNNs are capable of. This is their limitation, as they failed to exploit the graph
based relationships that define at the core of Ethereum’s network dynamics.

Node Behavior Analysis

It was showed that influential nodes have specific behavior patterns, depending on
their influence to the network. Pattern in these are valuable in terms of understanding
what makes a node influential in the Ethereum context.

. High Connectivity: Nodes with high degree centrality were shown to have
initiated and engaged in consensus activities frequently. They (these nodes) served
as nodes that acted as hubs for tfransaction propagation throughout the network.
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Having their connections intact, they have a critical role to play in keeping Ethereum’s
throughput at speeds still digestible for Ethereum users.

. Smart Contract Activity: Higher influence was ranked on nodes that had
deployed or interacted with more than one smart contract. It would also indicate the
degree to which programmability will be important in the Ethereum ecosystem, where
smart contracts are central. These nodes help make the platform useful due to their
support of decentralized applications (DApps) as well as tokenized ecosystems.

. Temporal Stability: It was shown that the activity levels of influential nodes were
consistent with tfime, as opposed to sporadic or transient behaviors. This indicates
stability upon their retention in service to support network operation. Less likely, the
nodes with temporal consistency represent the malicious or the fraudulent activity,
which consequently confirms their trustfulness inside the decenftralized system.

Influential Nodes: Connectivity vs Temporal Stability

0.97 - MNache E

0.96 e Mode C

femporal Stability (Propartion)

0.93

0.92 » Mode &

450 SO0 S50 a0a B50 FOo0
Connectivity (Mumber of Transactions)

Another interesting bit that arose from the analysis is that Ethereum’s network is quite
dynamic. However, certain nodes experienced fluctuating levels of activity and
would be heavily impacted by things such as market conditions, gas fees, and
changes in users’ behavior.

IMPLICATIONS

Ethereum is the identification of the influential nodes in the network is important for
network optimization, security and development protocol analysis. This study helps
derive insights and inform strategies to improve performance and robustness of
blockchain systems.

o Network Optimization

It allows transaction propagation and consensus mechanisms to be optimised based
upon node behavior. Critical pathway nodes act as highly influential nodes that
transmit transaction dissemination, and can be used to enhance the fransaction
dissemination efficiency of the network. For instance, incentivizing participation in
these nodes for protocol upgrade or even targeting these nodes for the improvement.

° Fraud Detection

Direct applications in fraud detection and network security lie in the ability to identify
influential nodes. Potentially suspicious activity comes from anomalous nodes
malforming patterns of activity. Let’s take one instance for example, a node that
quickly increases its influence without aligning to the same transactional stability can
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provide an indication of threat. The early detection of such anomalies can stop
aftacks on the network such as double spending or Sybil attacks.

o Protocol Development

The influence of each node in the network distribution can be exploited to enhance
protocol development and the effort to scale. Ethereum, for example, goes from
proof of work (POW) to proof of stake (PoS) which changes participation dynamics in
nodes. Designing staking mechanisms can be informed by insights into influential
nodes, so that these mechanisms end up incentivising actual and sustained
meaningful contributions by core participants to the healthy operation of the
protocol.

o Economic Insights

Furthermore, economic insights info Ethereum'’s ecosystem can also be found in the
identification of influential nodes. Sometimes this smart contract activity will be
associated with nodes that are driving decentralized finance (DeFi) applications or
tokenized projects. These nodes can then be monitored to provide hints on market
trends, user behavior and ecosystem growth.

. Decentralization Metrics

Measuring degree of decentralization in Ethereum is a proxy using distribution of
influence between the nodes. Centralization risk can be a highly concentrated
influence, a more even distribution is a healthier and decentralized system.

Comparative Insights

Comparing GNN based methods to traditional centrality measures found alignments
and aberrations in node selection. Degree centrality and betweeness centrality often
identified hubs through the network, but GNNs did so with a more nuanced view that
included features related to smart confract interaction and temporal trends of
activity. The highlighted insights about the limitations of only graph theoretic metrics
in the dynamic blockchain environments complement the holistic understanding of
the problem.

LIMITATIONS AND CHALLENGES

Some limitations and challenges remain, however, where the study proves the
efficacy of machine learning to identify influential nodes:

o Scalability: Furthermore, training GNNs with large scale blockchain data
presents high computational demands that are well beyond the resources required in
real time applications.

. Feature Engineering: Yet, obtaining sensible features from Ethereum'’s
abstracted ecosystem is a non-trivial task which must be approached with domain
expertise and continual refinement.

o Dynamic Behavior: However, temporal variability of node activity creates issues
in maintaining up to date models, in particular of rapidly evolving networks such as
Ethereum.

Future research can address these challenges with lightweight GNN architectures,
feature extraction automation, or the integration of real time monitoring systems.
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CONCLUSION

In particular, this work highlights the key role of machine learning in blockchain
analytics to find the most influential nodes within the Ethereum network. To develop a
robust and scalable framework to analyze the intricate dynamics in Decentralized
Systems, research employs advanced graph based features and machine learning
models (Graph Neural Networks (GNNs)). In particular, the findings emphasize the role
that influential nodes play in assuring the remaining ethical congregation for
assistance and security along with the entire network’s efficiency. The research
confirmed that the stability of the network depends on these influential nodes for
propagation of the transactions and contribution towards Ethereum’s consensus
mechanisms. This study analyzes the unique characteristics of their behavior and their
impact on the market by analyzing their constant connectivity, smart contract smart
activity, temporal stability and more. Using GNNs coupled with graph embeddings
increased to an F1 score of 0.21 against node classification. This shows how graph-
based machine learning techniques are better than traditional methods at modeling
the intricate relationships among the complex decentralized Ethereum ecosystem.

This research show that machine learning can overcome limitations of traditional
graph theoretic approaches, and contribute to this work. Although degree and
betweenness centrality measures are used to measure node influence, they do not
measure the influence of Ethereum’s network dynamically or multiple dimensions. The
study able to perform a more holistic analysis, including transaction patterns, smart
contfract interactions, temporal metrics, all by incorporating advanced machine
learning models. This approach identifies key nodes, and also gives insight into the role
played in the wider Ethereum ecosystem by each node.

These findings have implications. Network operators can optimize transaction
propagation, build stronger consensus mechanisms and mitigate off security risks by
identifying influential nodes. Anomalies identified early in influencing nodes can be
used to help prevent fraud and improve the network’s resilience. Also, the node
influence insights can help with the design of the protocol for the future as Ethereum
progresses with updates such as fransitioning proof of law. The identification and
monitoring of key nodes also serves as useful metrics in assessing the extent of
decentralization in the network, in blackbox fashion, ensuring that Ethereum remains
faithful to its core principles.

The study has acknowledged its limitations, even with its contribution to it. Training
GNNs on large scale blockchain data presents scalability issues when this study seek
to use the frained model in real time. Furthermore, feature extraction is still a very
involved task because of Ethereum’s array and dynamic ecosystem. Improvement of
the practical applicability of the proposed framework will be of vitalimportance when
addressing these challenges. Further research could add to this study by observing
real time node influence by continuous exposure to network dynamics with streaming
data. Explainable Al techniques, on the other side, are more fransformative by putting
forward Explainability of machine learning models and making interpretability better
with ML predictions. Furthermore, node behaviour of different blockchains can be
compared and these insights could be helpful in understanding decentralized
systems.

Finally, scalability of decentralized networks via machine learning is the contribution
of this research to the growing discipline of blockchain analytics. Through identifying
and analyzing influential nodes, not only network dynamics of Ethereum are improved

11
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but the study also paves the road towards innovations in blockchain security,
scalability and efficiency. The insights gained provide assurance that machine
learning offers the promise of being a defining tool in building the future decentralized
systems.
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