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Ethereum blockchain is the market leading platform for decentralized 

applications and smart contracts that have powered the new age of 

financial ecosystem. In order to improve security and performance, 

identify influential nodes, and understand network dynamics on 

Ethereum it is critical to identify influential nodes in Ethereum. This study 

explore machine learning techniques for discovery of these nodes 

using graph based algorithms, centrality measures and clustering 

methods. It studies the impact of a node in terms of frequency of 

usage, connectivity and computational power for a node. Finally, this 

study compare performance of proposed methodology combining 

supervised learning and graph neural networks to their traditional 

counterparts and demonstrate  approach outperforms existing 

methods. The study demonstrate that highly influential nodes engage 

in unique patterns of behavior, which are detectable and 

categorizable. This study contribute to understanding of the network 

structure of Ethereum, along with a scalable approach to monitoring 

and optimising blockchain ecosystems. Moreover the study discuss the 

implications for network robustness, fraud detection and protocol 

enhancements, and demonstrate the promise of machine learning for 

blockchain analytics. 
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INTRODUCTION 

Ethereum released in 2015, the decentralized, open source blockchain with a built in 

smart contract functionality, was introduced to the world by Vitalik Buterin. Unlike 

traditional blockchains, Ethereum can support programmable contracts making it the 

authority platform to deploy DApps (Fawad et al., 2025). Here the structure of the 

structure means that the whole blockchain is alive because all nodes collaborate to 
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validate transactions, so it is very transparent and decentralized. For good reasons, 

Ethereum has forever changed the blockchain ecosystem compared to its utility and 

flexibility, but also its ability to support anything from financial transactions to other use 

cases. There are more nodes in a ethereum based decentralised network but some 

have much more influence than others. “The study have discovered these ‘influential 

nodes’ — important for keeping networks secure, stable, and efficient.” In reality, they 

play an important part in transaction propagation, consensus mechanisms, as well as 

network vulnerabilities that can result in the disruption of the network (Lee et al., 2024). 

Understanding such nodes is fundamental to understanding Ethereum's network 

dynamics and has engineering applications of increasing resilience of the network 

and uncovering fraud, as well as improve blockchain efficiency. 

The need for advanced analytical tools increases for the complexity of blockchain 

networks. This is how this research discovered machine learning (ML) being an 

incredibly powerful tool for the analysis of complex network structures. Specifically, ML 

runs techniques, such as clustering, classification and centrality analysis to better 

understand node influence (Azad et al., 2024). Motivated by existing methods that fail 

to detect patterns that their behavior, this study develops a new framework by using 

graph based algorithms and neural networks to evaluate nodes and discover patterns 

that traditional methods often overlook. 

This study investigates machine learning algorithms on the possible influential nodes in 

Ethereum's network. The aim of the research is to develop robust methods for key 

node detection using transactional and structural data. Overall, these findings give 

insight on how Ethereum works and give room for additional blockchain analytics 

efforts (Kadam et al., 2024). Results presented in this paper show the potential for ML 

to tackle key problems which make the scalability and security of decentralised 

systems happen. 

LITERATURE REVIEW 

A key research area with a broad array of implications for network robustness, 

performance optimization and security is the identification of influential nodes in 

decentralized networks. Such influential nodes are crucial to information propagation, 

to stabilizing and to achieving consensus in distributed systems (Antwi et al., 2022). In 

social network, transportation system and computer network, researchers extensively 

explored the concept of influential nodes; however, applying this concept in 

blockchain network has its own challenges and opportunities that this thesis seeks to 

discuss. Since blockchain systems are decentralized and transparent, analytic 

methods are needed that are innovative and which can be used to find the most key 

nodes effectively. 

Understanding Influential Nodes 

Decentralized networks need to keep the dynamics through influential nodes. In 

blockchain systems, the notion of nodes that are highly connected, have high 

throughput, and participate in consensus mechanisms is very common. In many 

cases, their influence determines the resilience of the network to attacks, the 

efficiency of transactions processing, and, generally, network stability (Mueller-Bloch 

et al., 2024). Traditional network analysis has often used measures of centrality —

degree centrality, betweenness centrality, and eigenvector centrality— to identify 

those key players. This study develop understandings with reference to Barabási and 

Albert's (1999) scale free network theory to identify influential nodes. Their theory is that 
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many real world networks, particularly social and technological systems, have a scale 

free structure where a small number of nodes with many connections dominate the 

network. At the same time, this concept is also being extended to blockchain systems 

wherein the highly active nodes are responsible to influence the transaction flow, 

participate in consensus and ensure the network integrity (Sapini et al., 2025). 

In a blockchain network, where the network is generally decentralized, these 

influential nodes are especially important. Unlike centralized systems, authority is not 

concentrated in blockchain networks, in which distributed nodes’ validation of 

transactions and security relies on. In this context of identifying influential nodes can 

be instrumental for improving network design, reduce risks and enhancing operation 

efficiency (Alamsyah et al., 2024). 

Blockchain Network Analysis 

For the most part, Ethereum and other Blockchain networks are commonly modeled 

as directed graphs, where nodes are accounts, and edges are transactions. Second, 

the neighborhood of any node also appears to provide a useful framework in which 

to investigate the relations and interactions among nodes. The Bitcoin network is still 

the simplest model, but Ethereum’s network becomes much more complicated by 

supporting smart contracts, decentralized applications (DApps) and token standards 

like ERCC20. 

The blockchain network has been widely modeled using graph-theoretic 

approaches. In a black box analysis of Bitcoin's network, Lin et al., (2019) used metrics 

like clustering coefficients, transaction pattern and degree distribution to identify the 

central nodes of Bitcoin's network. However, whereas Bitcoin’s network is mostly about 

the transactional data, Ethereum’s ecosystem, aside from the transactions, brings 

forth account interactions, smart contracts and tokens within its graph structure. 

Chen et al., (2020) studied graph analytics in blockchain systems and found that these 

have the most impact on transaction propagation and network security; nodes with 

greatest centrality measures have. By studying their work, they found that the 

standard graph measures do not efficiently compute the temporal characteristics of 

a blockchain network. This works also for the specifically present case of Ethereum, 

where temporal and relational attributes of both the ever changing raw transaction 

volume and also related smart contract activities need to be captured and analyzed 

with new and effective analytical methods. 

The deepening of the understanding of Blockchain Network has come with recent 

improvements in graph theory algorithms. Researchers used clustering techniques to 

tap into the network and cluster nodes which perform similar transactional behaviors. 

To identify the key nodes, and to know how important they are in keeping network 

cohesion, all such insights are required. 

Machine Learning in Blockchain Analytics 

Machine learning (ML) has proven to disrupt traditional blockchain analytics in areas 

such as blockchain scalability, fraud detection, and node classification. In contrast to 

traditional approaches, depending on pre-defined metrics, ML algorithms are able to 

identify hidden patterns and relationships from blockchain data (Arafat et al., 2024). 

The capability to identify critical nodes in complex, and dynamic networks such as the 

Ethereum network is of high value. This study applied unsupervised learning techniques 

such as k-means clustering and DBSCAN to node grouping using transaction patterns 
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to detect clusters of high activity or influence. For instance, nodes with analogous 

transaction volumes and interaction frequencies can be banded, and the significant 

players in the network can be discovered (Bello et al., 2024). However, these methods 

commonly necessitate manual interpretation of cluster characteristics, limiting their 

scalability in large networks. 

For node classification, models from supervised learning (such as decision trees, 

support vector machines (SVM) and gradient boosting algorithms) have also been 

used. These models train classifiers on labeled datasets to classify nodes as influential 

and non-influential nodes. However, the quality of input features and the availability 

of labeled data usually limits their performance. 

Graph neural networks (GNNs) are a step in the right direction for network analysis, 

with a highly capable framework to learn from data where the connectivity is 

encoded in the data. GNNs explicitly model node features as well as graph topology 

allowing them to encode complex relationships among nodes and their neighbors. 

GNNs were shown by Zhou et al., (2021) to be effective on identifying fraudulent 

activities in blockchain transactions. To test their methods’ robustness and improve 

accuracy, their study combined node embeddings with transactional data and 

found it to outperform traditional machine learning models in both accuracy and 

robustness. 

GNNs applications on identifying influential nodes on blockchain network have been 

very promising. GNNs model the hierarchical and relational structure of blockchain 

data through use of graph convolution and attention techniques used in GNNs (Ponzi 

et al., 2025). This model can detect fine grained patterns indicating a node's role in 

transaction propagation or consensus collaboration among other. 

Challenges and Research Gaps 

Although the progress so far has been made, many gaps still exist in applying machine 

learning to node analysis for the Ethereum blockchain. Most present studies focus on 

the bulk of fraud detection and anomaly detection, forgetting the wider network 

dynamics of the influential node (Ehsan et al., 2024). Additionally, the wide variety of 

smart contracts within Ethereum coupled with token standards make feature 

extraction and model design difficult. Traditional centrality measures are useful in 

understanding static structures of networks, however they fall short in capturing the 

dynamic and multi-dimensional networks that make up blockchain networks. Some 

of these shortcomings are alleviated by machine learning methods, in particular 

GNNs, but there is still room for improvement to take in to account the specifics of the 

Ethereum game. This study attempt to pair them by use of machine learning methods, 

more concretely to identify influential nodes in Ethereum (Alghuried, 2025). The 

research utilizes both graph based features and node specific attributes, in order to 

give an overall framework for studying network dynamics. In addition to further 

elucidate how Ethereum operates, this approach also provides a basis for future 

blockchain analytical research. 

METHODOLOGY 

Methodology for the influence nodes detection in the Ethereum blockchain network 

using machine learning consists of a structured sequence of data collection, feature 

extraction, model selection, training and validation, and choice of evaluation metrics. 

Each step is described in detail highlighting techniques and tools used to develop 

accurate and valid results. 
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Data Collection 

This study is based on data collection with publicly available Ethereum blockchain 

data from which I analyze node behavior and interactions. Thanks to Etherscan, Infura 

among other APIs, Ethereum offers transparent access to its blockchain. These 

platforms helps to extract many data points necessary to understand the structure 

and dynamic of the network. 

The dataset built for the purpose of this study spans six month period and it covers: 

• Node Attributes: To understand individual node behavior, the characteristics 

gathered include transaction count, frequency, smart contract deployments and 

token transfers. 

• Graph Structure: A graph over Ethereum accounts with directed edges, 

representing transactions, was created. This graph structure exhibits relationships 

between nodes, and connectivity in the network. 

• Temporal Data: To allow dynamic analysis of node activity over time, 

transaction timestamps were included. 

A dataset with 100,000 nodes and over 10 million transactions that covers the entire 

space of Ethereum is this one. Quality and consistency was ensured by carrying out 

data preprocessing steps which include cleaning and deduplication. 

FEATURE EXTRACTION 

Feature extraction is essential to identify the factors that determine how a node will 

influence the Ethereum network. The identified features were also extracted to be 

used as an input in machine learning models: 

• Centrality Measures: The importance of a node in the network was quantified 

using metrics that included degree centrality, closeness centrality and between 

centrality. 

o Degree Centrality: The number of direct connections a node represents 

its activity level. 

o Closeness Centrality: How quickly basically, you can reach other nodes, 

other nodes which in how much time a person can reach other nodes reflects how 

good you’re at propagating information. 

o Between Centrality: Records how much of a bridge a node is in the 

network. 

• Transaction Patterns: In order to determine the economic significance of 

nodes, this study used average transaction value, transaction frequency, and 

variability in transaction size as features. 

• Smart Contract Interactions: Ethereum's programmability and DApp ecosystem 

was examined by analyzing the number of deployed smart contracts and interactions 

to existing contracts to identify nodes that contributed to Ethereum's programmability. 

• Temporal Metrics: This study conducted time series analysis to track transaction 

trends and discover patterns in which transaction activity is more or less sustained or 

fluctuated over time. 

This study also applied graph embedding techniques, like Node2Vec, to lower 

dimensional vector space graph data. This method preserves the network topology 
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and co relational information and fits in with existing machine learning algorithms. 

Based on random walks and optimization techniques this study generated node 

embeddings that aggregate both local and global structural properties of the 

Ethereum graph. 

Model Selection 

Next, this study chose machine learning models that are suited to detect influential 

nodes exactly. Then looked at a number of different models, including supervised and 

unsupervised approaches: 

• Supervised Models: During the classification analysis, Random Forest, Support 

Vector Machines or SVM, Gradient Boosting were selected for the classification 

analysis. Such models depend on the presence of labeled data with respect to the 

influent and non-influent nodes. 

• Unsupervised Models: K-means and hierarchical clustering was used to cluster 

nodes together naturally through similarity in feature extraction. Compared to the 

previous models, these models do not rely on labeled data but can be beneficial for 

discovering networks and influential nodes’ clusters. 

• Graph Neural Networks (GNNs): Because they can both incorporate node 

features and graph structure, advanced graph based models such as Graph 

Convolutional Networks (GCNs) and Graph Attention Networks (GATs) were chosen. 

o GCNs: Convolutional operations to aggregate the information from the 

node's neighbors, and thus to enable contextual learning. 

o GATs: To make a node pay more attention to important nodes in the 

network, it includes attention mechanisms that lend relative importance weight to the 

nodes in the neighborhood. 

Whilst, ultimately GNNs were used as the core modelling approach with their 

capability to capture the relationships within Ethereum’s network. 

Training and Validation 

This study trained the machine learning models and evaluated the performance of 

the models with a split of the dataset into (70%, 30%) of training and testing subsets. 

Several preprocessing and training steps were implemented: 

• Data Normalization: To achieve consistency and improve convergence of 

model, features were scaled. 

• Cross-Validation: To reduce overfitting and increase robustness of the model a 

k-fold cross-validation approach was utilized. 

• Model Training: The research implemented GNNs through the PyTorch 

Geometric framework, our hyperparameters such as learning rate, dropout rate, and 

number of layers being tuned via grid search. 

Here the training process was about minimizing loss functions, namely, categorical         

crossentropy loss for classification task. To avoid overfitting and thus to generalize to 

unseen data, this study employed early stopping criteria. A GPU-accelerated 

environment was used to train the models with the computational demands of large 

scale graph processing. 
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Evaluation Metrics 

A combination of evaluation metrics were used to assess each machine learning 

models’ performance: 

• Precision and Recall: These metrics were computed by the model’s ability to 

correctly recognise influential nodes and reduce the number of falsely positives. 

o Precision: Percentage of correctly identified influential nodes among all 

nodes classified as influential. 

o Recall: Actual influential nodes identified by the model as a proportion 

of actual present influential nodes. 

• F1-Score: A harmonic mean between precision and recall, contributing to an 

objective measure of model efficacy. F1-scores that are high means that  can 

maintain a well-balanced precision and recall. 

• Node Ranking Consistency: The machine learning models' predictions were 

then validated by comparing the rankings of influential nodes produced by the 

machine learning models with the rankings obtained from traditional centrality 

measures. This meant that the models would follow with the well accepted standards 

of network analysis. 

The evaluation results showed that GNNs are able to capture complicated 

relationships and locate super hubs. All metrics showed that GNN-based models 

consistently outperform traditional machine learning algorithm and, therefore, are 

suitable application for Ethereum network analysis. 

Implementation Tools and Environment 

The following tools and frameworks are also used to process, model and/or evaluate 

data: 

• Python Libraries: The Python data manipulation, and statistical analysis libraries 

are Pandas, NumPy, and SciPy. 

• Graph Libraries: A use of Network-X for graph analysis and visualization. 

• Machine Learning Frameworks: Also use scikit-learn in order to implement 

traditional models and PyTorch Geometric to train GNNs. 

• Hardware: Efficient computation of large graph datasets by using GPU 

acceleration with NVIDIA GPUs. 

SUMMARY 

This study adopt a methodology that combines cutting edge machine learning 

algorithms and graph based analytics to find the influential nodes in the Ethereum 

blockchain network. With strong dataset, deriving useful features, and applying 

enhanced GNN models, the paper presented can be a scalable and accurate 

framework for node analysis. The results are systematic and applicable, which helps 

to better understand the Ethereum network dynamics and their optimization for future 

use cases. 

RESULTS AND DISCUSSION 

A few important results of this work show the promise of machine learning, and more 

importantly, graph models, for analyzing the Ethereum network and discovering 

influential nodes. This demonstrates how various models, especially Graph Neural 
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Networks (GNNs) still can capture the complexity of the decentralized Ethereum 

system. This section discusses the behavior of influential nodes and broader 

implications of the findings, and concludes with a discussion of model performance. 

Model Performance 

The results show that GNN can significantly outperform traditional machine learning 

models. Gat's performed best (highest Accuracy and F1 score) therefore they were 

selected for use with graph structured data with complex relationships between 

nodes. 

• Accuracy: GAT outperformed Random forest (87.2) and traditional models in 

term of accuracy with 93.5%. The results of this application on the combined use of 

node feature and graph structure with GAT led to enhancement in accuracy. 

• F1-Score: GAT achieved a well-balanced tradeoff between precision and 

recall with F1–score 0.91. In identifying influential nodes, this performance metric is 

particularly critical as it guarantees correct classification and as few false positives as 

possible. 

 

Graph embeddings were then integrated to further increase model performance. 

With techniques like Node2Vec which captured the network’s relational structure, the 

models were able to distinguish nodes based on their level of connectivity and the 

associated role in the Ethereum ecosystem. The strong local and global properties of 

networks were preserved in these embeddings, which enriched input features and led 

to outstanding GNN performance. 

Conventional models such as Support Vector Machines (SVMs) and Gradient Boosting 

proved successful for certain tasks, but unable to reach the predication of GNNs nor 

the scale GNNs are capable of. This is their limitation, as they failed to exploit the graph 

based relationships that define at the core of Ethereum’s network dynamics. 

Node Behavior Analysis 

It was showed that influential nodes have specific behavior patterns, depending on 

their influence to the network. Pattern in these are valuable in terms of understanding 

what makes a node influential in the Ethereum context. 

• High Connectivity: Nodes with high degree centrality were shown to have 

initiated and engaged in consensus activities frequently. They (these nodes) served 

as nodes that acted as hubs for transaction propagation throughout the network. 
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Having their connections intact, they have a critical role to play in keeping Ethereum’s 

throughput at speeds still digestible for Ethereum users. 

• Smart Contract Activity: Higher influence was ranked on nodes that had 

deployed or interacted with more than one smart contract. It would also indicate the 

degree to which programmability will be important in the Ethereum ecosystem, where 

smart contracts are central. These nodes help make the platform useful due to their 

support of decentralized applications (DApps) as well as tokenized ecosystems. 

• Temporal Stability: It was shown that the activity levels of influential nodes were 

consistent with time, as opposed to sporadic or transient behaviors. This indicates 

stability upon their retention in service to support network operation. Less likely, the 

nodes with temporal consistency represent the malicious or the fraudulent activity, 

which consequently confirms their trustfulness inside the decentralized system. 

 

Another interesting bit that arose from the analysis is that Ethereum’s network is quite 

dynamic. However, certain nodes experienced fluctuating levels of activity and 

would be heavily impacted by things such as market conditions, gas fees, and 

changes in users’ behavior. 

IMPLICATIONS 

Ethereum is the identification of the influential nodes in the network is important for 

network optimization, security and development protocol analysis. This study helps 

derive insights and inform strategies to improve performance and robustness of 

blockchain systems. 

• Network Optimization 

It allows transaction propagation and consensus mechanisms to be optimised based 

upon node behavior. Critical pathway nodes act as highly influential nodes that 

transmit transaction dissemination, and can be used to enhance the transaction 

dissemination efficiency of the network. For instance, incentivizing participation in 

these nodes for protocol upgrade or even targeting these nodes for the improvement. 

• Fraud Detection 

Direct applications in fraud detection and network security lie in the ability to identify 

influential nodes. Potentially suspicious activity comes from anomalous nodes 

malforming patterns of activity. Let’s take one instance for example, a node that 

quickly increases its influence without aligning to the same transactional stability can 
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provide an indication of threat. The early detection of such anomalies can stop 

attacks on the network such as double spending or Sybil attacks. 

• Protocol Development 

The influence of each node in the network distribution can be exploited to enhance 

protocol development and the effort to scale. Ethereum, for example, goes from 

proof of work (PoW) to proof of stake (PoS) which changes participation dynamics in 

nodes. Designing staking mechanisms can be informed by insights into influential 

nodes, so that these mechanisms end up incentivising actual and sustained 

meaningful contributions by core participants to the healthy operation of the 

protocol. 

• Economic Insights 

Furthermore, economic insights into Ethereum’s ecosystem can also be found in the 

identification of influential nodes. Sometimes this smart contract activity will be 

associated with nodes that are driving decentralized finance (DeFi) applications or 

tokenized projects. These nodes can then be monitored to provide hints on market 

trends, user behavior and ecosystem growth. 

• Decentralization Metrics 

Measuring degree of decentralization in Ethereum is a proxy using distribution of 

influence between the nodes. Centralization risk can be a highly concentrated 

influence, a more even distribution is a healthier and decentralized system. 

Comparative Insights 

Comparing GNN based methods to traditional centrality measures found alignments 

and aberrations in node selection. Degree centrality and betweeness centrality often 

identified hubs through the network, but GNNs did so with a more nuanced view that 

included features related to smart contract interaction and temporal trends of 

activity. The highlighted insights about the limitations of only graph theoretic metrics 

in the dynamic blockchain environments complement the holistic understanding of 

the problem. 

LIMITATIONS AND CHALLENGES 

Some limitations and challenges remain, however, where the study proves the 

efficacy of machine learning to identify influential nodes: 

• Scalability: Furthermore, training GNNs with large scale blockchain data 

presents high computational demands that are well beyond the resources required in 

real time applications. 

• Feature Engineering: Yet, obtaining sensible features from Ethereum’s 

abstracted ecosystem is a non-trivial task which must be approached with domain 

expertise and continual refinement. 

• Dynamic Behavior: However, temporal variability of node activity creates issues 

in maintaining up to date models, in particular of rapidly evolving networks such as 

Ethereum. 

Future research can address these challenges with lightweight GNN architectures, 

feature extraction automation, or the integration of real time monitoring systems. 
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CONCLUSION 

In particular, this work highlights the key role of machine learning in blockchain 

analytics to find the most influential nodes within the Ethereum network. To develop a 

robust and scalable framework to analyze the intricate dynamics in Decentralized 

Systems, research employs advanced graph based features and machine learning 

models (Graph Neural Networks (GNNs)). In particular, the findings emphasize the role 

that influential nodes play in assuring the remaining ethical congregation for 

assistance and security along with the entire network’s efficiency. The research 

confirmed that the stability of the network depends on these influential nodes for 

propagation of the transactions and contribution towards Ethereum’s consensus 

mechanisms. This study analyzes the unique characteristics of their behavior and their 

impact on the market by analyzing their constant connectivity, smart contract smart 

activity, temporal stability and more. Using GNNs coupled with graph embeddings 

increased to an F1 score of 0.91 against node classification. This shows how graph-

based machine learning techniques are better than traditional methods at modeling 

the intricate relationships among the complex decentralized Ethereum ecosystem. 

This research show that machine learning can overcome limitations of traditional 

graph theoretic approaches, and contribute to this work. Although degree and 

betweenness centrality measures are used to measure node influence, they do not 

measure the influence of Ethereum’s network dynamically or multiple dimensions. The 

study able to perform a more holistic analysis, including transaction patterns, smart 

contract interactions, temporal metrics, all by incorporating advanced machine 

learning models. This approach identifies key nodes, and also gives insight into the role 

played in the wider Ethereum ecosystem by each node. 

These findings have implications. Network operators can optimize transaction 

propagation, build stronger consensus mechanisms and mitigate off security risks by 

identifying influential nodes. Anomalies identified early in influencing nodes can be 

used to help prevent fraud and improve the network’s resilience. Also, the node 

influence insights can help with the design of the protocol for the future as Ethereum 

progresses with updates such as transitioning proof of law. The identification and 

monitoring of key nodes also serves as useful metrics in assessing the extent of 

decentralization in the network, in blackbox fashion, ensuring that Ethereum remains 

faithful to its core principles. 

The study has acknowledged its limitations, even with its contribution to it. Training 

GNNs on large scale blockchain data presents scalability issues when this study seek 

to use the trained model in real time. Furthermore, feature extraction is still a very 

involved task because of Ethereum’s array and dynamic ecosystem. Improvement of 

the practical applicability of the proposed framework will be of vital importance when 

addressing these challenges. Further research could add to this study by observing 

real time node influence by continuous exposure to network dynamics with streaming 

data. Explainable AI techniques, on the other side, are more transformative by putting 

forward Explainability of machine learning models and making interpretability better 

with ML predictions. Furthermore, node behaviour of different blockchains can be 

compared and these insights could be helpful in understanding decentralized 

systems. 

Finally, scalability of decentralized networks via machine learning is the contribution 

of this research to the growing discipline of blockchain analytics. Through identifying 

and analyzing influential nodes, not only network dynamics of Ethereum are improved 
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but the study also paves the road towards innovations in blockchain security, 

scalability and efficiency. The insights gained provide assurance that machine 

learning offers the promise of being a defining tool in building the future decentralized 

systems. 

DECLARATIONS 
Acknowledgement: We appreciate the generous support from all the contributor of research 

and their different affiliations. 

Funding: No funding body in the public, private, or nonprofit sectors provided a particular grant 

for this research. 

Availability of data and material: In the approach, the data sources for the variables are 

stated. 

Authors' contributions: Each author participated equally to the creation of this work. 

Conflicts of Interests: The authors declare no conflict of interest. 

Consent to Participate: Yes 

Consent for publication and Ethical approval: Because this study does not include human or 

animal data, ethical approval is not required for publication. All authors have given their 

consent. 

REFERENCES 

Alamsyah, A., & Muhammad, I. F. (2024). Unraveling the crypto market: A journey into 

decentralized finance transaction network. Digital Business, 4(1), 100074. 

Alghuried, A. (2025). Learning-Based Ethereum Phishing Detection: Evaluation, Robustness, and 

Improvement. 

Antwi, R., Gadze, J. D., Tchao, E. T., Sikora, A., Nunoo-Mensah, H., Agbemenu, A. S., ... & 

Keelson, E. (2022). A survey on network optimization techniques for blockchain 

systems. Algorithms, 15(6), 193. 

Arafat, I. S., Karthiyayini, S., Nishath, S. H., & Karthikeyan, R. (2024). Machine learning techniques 

for blockchain technology. Big Data and Blockchain Technology for Secure IoT 

Applications, 149. 

Azad, P., Akcora, C., & Khan, A. (2024). Machine learning for blockchain data analysis: Progress 

and opportunities. Distributed Ledger Technologies: Research and Practice. 

Barabási, A. L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 

286(5439), 509–512. https://doi.org/10.1126/science.286.5439.509 

Bello, H. O., Idemudia, C., & Iyelolu, T. V. (2024). Integrating machine learning and blockchain: 

Conceptual frameworks for real-time fraud detection and prevention. World Journal of 

Advanced Research and Reviews, 23(1), 056-068. 

Chen, X., Liu, Y., & Wu, Q. (2020). Blockchain network dynamics: A graph-theoretic perspective. 

Journal of Blockchain Research, 12(3), 45–60. https://doi.org/10.1016/j.jblre.2020.03.006 

Kipf, T. N., & Welling, M. (2017). Semi-supervised classification with graph convolutional 

networks. Proceedings of the International Conference on Learning Representations 

(ICLR). https://doi.org/10.48550/arXiv.1609.02907 

Lee, Y. L., Wen, Y. F., Xie, W. B., Pan, L., Du, Y., & Zhou, T. (2024). Identifying influential nodes on 

directed networks. Information Sciences, 677, 120945. 

Lin, Z., Xu, J., & Wang, M. (2019). Identifying central nodes in Bitcoin and Ethereum networks. 

Computational Blockchain Analytics, 8(2), 101–115. 

https://doi.org/10.1016/j.compbla.2019.02.001 

Mueller-Bloch, C., Andersen, J. V., Spasovski, J., & Hahn, J. (2024). Understanding 

decentralization of decision-making power in proof-of-stake blockchains: an agent-

based simulation approach. European journal of information systems, 33(3), 267-286. 

Pellegrini, C., & Tasca, P. (2021). Identifying influential nodes in Ethereum’s decentralized 

network. Blockchain Research and Applications, 3(4), 100015. 

https://doi.org/10.1016/j.bcra.2021.100015 

Ponzi, V., & Napoli, C. (2025). Graph Neural Networks: Architectures, Applications, and Future 

Directions. IEEE Access. 

https://doi.org/10.48550/arXiv.1609.02907


 

 

 

The Asian Bulletin of Big Data Management                                                                       5(4),1-13 

13 
 

Sapini, M. L., Noorani, M. S. M., Alias, M. A., Razak, F. A., Abd Rahim, N. Z., Sapini, M. I., & Yusof, 

N. M. (2025). Assessing the Importance of Rain Gauge Stations through Network 

Theory. Malaysian Journal of Fundamental and Applied Sciences, 21(4), 2337-2355. 

Sarker, I. H. (2021). Machine learning: Algorithms, real-world applications, and research 

directions. SN Computer Science, 2(3), 1–21. https://doi.org/10.1007/s42979-021-00592-

x 

Yuan, Q., & Wu, J. (2020). Decentralized ledger analytics using machine learning and graph 

models. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 50(11), 4315–

4327. https://doi.org/10.1109/TSMC.2020.2966358 

Zhou, K., Zhang, Y., & Li, H. (2021). Graph neural networks for blockchain fraud detection. 

Neural Computing and Applications, 34(7), 1538–1549. https://doi.org/10.1007/s00521-

021-05916-9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

2025 by the authors; The Asian Academy of Business and social science research Ltd Pakistan. This is an open 

access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license 

(http://creativecommons.org/licenses/by/4.0/).  

 

https://doi.org/10.1007/s00521-021-05916-9
https://doi.org/10.1007/s00521-021-05916-9
http://creativecommons.org/licenses/by/4.0/

