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Maize plays a vital role in Pakistan's agriculture, but its seeds are 

susceptible to damage and mold during transportation and storage, 

making it essential to strengthen the quality identification of maize 

seeds to increase crop yield and quality. Conventionally, seed 

recognition has remained inefficient and subjective despite the 

improvement in machine vision technology and digital image 

processing method employed in agricultural context. However, seed 

testing is still the most important aspect of seed technologies. The 

project was to identify pure and broken seeds with the help of deep 

learning, with an RGB camera which had high precision, low error, 

and accurate outputs at minimum space and cost.  In order to solve 

this issue, various CNN models were used to identify mixed maize 

seeds as pure or broken seeds whereby the accuracy rate of CNN 

Sequential Model, ResNet50 and VGG16 was 86%, 80%, and 93%, 

respectively. The seed identification with the CNN models was much 

better than the conventional methods, as the complex features of 

the seed images are extracted and this minimizes the subjectivity of 

the conventional methods.  The achievements of the CNN models in 

the project demonstrate the potential of deep learning in the 

classification of mixed maize seeds as pure and broken. This 

advancement in technology of seed identification may be a major 

boost in the efficiency and reliability of seed tests in the Pak 

agriculture production sector. 
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INTRODUCTION 

Agriculture is an important element of the Pakistan economy with high Gross Domestic 

Product (GDP), employment and food security [1]. Maize (Zea mays L.) is an important 

crop in this sector since it is used as an essential food as well as animal food and 

industrial products. Quality of the seeds is also of utmost importance since this directly 

affects crop establishment, uniformity, and end yield [2]. Nevertheless, the maize 

seeds are very vulnerable to mechanical damage and fungal contamination during 

post harvesting, storage and transportation. The germination rates of planting stocks, 

seedling vigor, and the general crop productivity may be seriously impacted by the 

penetration of broken or damaged seeds into the planting stock. Conventionally, 

seed quality evaluation has been dependent on manual inspection and sorting a 

process that is subjective in nature, labor-intensive and inefficient at that. The 

traditional practices are highly subject to human mistakes and discrepancy and may 

result in inadvertent sorting of poor seeds or loss of healthy ones [3]. As a result, it is 

urgently necessary to have an automated, objective and quick system that can 

enhance seed quality control measures. Continuous use of manual techniques in 

identifying seed quality in the agriculture of Pakistan especially maize has a lot of 

challenges. Such techniques are not efficient, accurate, and scalable to ascertain 
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the current farming activities, which in turn would slow down the productivity and 

economic gains of the farmers. An automated solution is urgently needed to 

overcome the limitations of low throughput, high subjectivity, and operational 

inefficiency. 

The primary objective of this research is to develop and evaluate a deep learning-

based automated system for the accurate classification of maize seeds into "pure" 

and "broken" categories. The specific aims are: 

• To implement and train three distinct Convolutional Neural Network (CNN) 

architectures—a custom Sequential Model, ResNet50, and VGG16 for binary image 

classification. 

• To perform a comparative analysis of these models based on performance 

metrics including accuracy, precision, and recall. 

• To demonstrate the feasibility of a cost-effective and space-efficient system 

utilizing a standard RGB camera for high-precision seed quality assessment. 

PROPOSED METHODOLOGY 

This study leverages a dataset comprising over 30,000 annotated images of pure and 

broken maize seeds. We employed a comparative framework, training and 

evaluating three prominent CNN architectures: 

CNN Sequential Model: A custom-designed network with a linear stack of 

convolutional, pooling, and dense layers for hierarchical feature extraction  

 

Figure 1.  

Architecture of CNN sequential model 

ResNet50: A deep 50-layer network utilizing residual learning blocks to facilitate the 

training of a very deep architecture and mitigate the vanishing gradient problem. 

 

Figure2. 

Architecture of ResNet50 model 
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VGG16: A well-established 16-layer network recognized for its uniform architecture 

using small receptive fields, providing a strong baseline for image classification tasks. 

 

Figure 3. 

Architecture of VGG16 model 

Table 1. 

Summary of Deep Learning Models Employed 

Model Depth Key Characteristic 

CNN Sequential Custom Linear stack of convolutional and pooling layers 

ResNet50 50 layers Residual connections with identity mapping 

VGG16 16 layers Uniform architecture with 3x3 convolutions 

The models were trained end-to-end using the collected image dataset to learn 

discriminative features for robust classification [19]. This research contributes to the 

field of precision agriculture by demonstrating a practical application of deep 

learning for automated seed quality control [20]. The successful implementation of this 

system offers significant benefits, including Enhanced Agricultural Productivity: By 

ensuring the use of high-quality seeds, farmers can achieve better crop stands and 

higher yields. Economic Efficiency by Automation reduces reliance on manual labor, 

decreases operational costs, and minimizes losses from misclassified seeds. 

Technological Adoption research offers an assessed framework through which 

affordable, vision-based AI systems could be incorporated into the agricultural supply 

chain in developing nations such as Pakistan to assist in wider initiatives of food security 

and sustainable agriculture [21,22]. 

Existing Literature 

Deep learning architectures, most notably the Convolutional Neural Networks (CNNs) 

have radically altered the evolution of computer vision as it has been shown that they 

can automatically learn to produce hierarchical feature representations to raw pixel 

inputs. The initial pioneering research by Bayar and Stam made CNNs flexible to 

specialized visual tasks by detecting manipulation artifacts [1] and further studies 

expanded such functionality to various tasks such as cultural heritage preservation 

and medical imaging [2,3]. The architectural development of VGG16 into the 

revolutionary ResNet50, changing the deep stacks of small convolutional filters to the 

revolutionary residual connections, not only allowed more advanced feature-learning 
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but also effectively addressed the issue of vanishing gradient in deep networks [4,5].In 

object detection, the YOLO framework has been a revolutionary development that 

transformed detection to a single regression problem, which led to the development 

of increased capabilities in inference speed and competitive accuracy [6]. Further 

work improved the performance of YOLO by improving its training strategies and 

architecture and comparative analyzes showed its benefits in real-time use in 

applications in various areas, including self-driving cars and field inspection systems 

[7,8]. The multi-purpose nature of the framework is also demonstrated by its 

application in other agricultural settings, such as seed classification and quality 

assessment tasks [9]. The introduction of deep learning to agriculture has prompted 

the development of precision agriculture technologies, with the first ones being large-

scale monitoring tasks implemented by the use of remote sensing [10,11]. The 

application area of seed quality assessment has become one of the most promising 

areas, where hand inspection has been gradually replaced by use of automated 

visual inspection systems. Early solutions that employed standard machine vision and 

hyperspectral imaging [12,13] have developed to involve deep learning-based 

solutions that are proving highly effective in varietal classification, internal defects, 

and overall assessment of quality [14,15,16]. 

Notably, soybean seed inspection has been used as the experimental ground in 

developing advanced defect recognition, where researchers have come up with 

robust frameworks to identify internal defects, external defects on the whole surface, 

and quality on the whole with CNN architecture and have extended their capability 

to detect dynamic variants of seeds through assessment Such solutions show potential 

of automated control of quality in the seed processing activities and offer useful 

methodologies that can be applied to other crops [18]. On the basis of these well-

known deep learning networks and agricultural computer vision concepts, this study 

fulfills this crucial requirement of high-performance, precise and scale able seed 

quality measurements in maize production systems via comparative study of various 

CNN networks of pure and broken seed classification [17].  

Dataset Composition and Experimental Setup 

Experimental Framework and Dataset 

The experimental framework was designed to systematically evaluate deep learning 

models for maize seed classification. A comprehensive dataset comprising over 

30,000 RGB images of maize seeds was utilized, with 26,000 images representing pure 

seeds and 6,000 images representing broken seeds. The dataset was carefully curated 

to ensure diverse representations of seed conditions, orientations, and lighting 

variations to enhance model generalization capabilities [23]. 

Development Environment Configuration 

The experimental setup employed Python programming language within the 

Anaconda distribution environment, specifically tailored for data science 

applications. The development interface, shown in Figure 3.1, provided an integrated 

platform for package management and environment configuration. Jupyter 

Notebook served as the primary development environment, enabling interactive 

code execution and visualization, as illustrated in Figure 3.2. 
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Figure 4. 

Anaconda navigator interface 

 

Figure 5. 

 Installed libraries in the anaconda navigator 

COMPUTATIONAL LIBRARIES AND IMPLEMENTATION 

Numerical Computing Infrastructure 

NumPy provided the fundamental array operations and numerical computing 

capabilities essential for image data manipulation. The library was implemented using 

standard installation and import protocols (Figures 3.3,) with key arrays including 

⚫ data: Image data tensor containing resized seed image 

⚫ labels: Corresponding classification labels 

⚫ Training and validation splits (train_data, valid_data, train_labels, valid_labels) 

 

Figure 6. 

Jupyter notebook interface 
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Deep Learning Framework 

TensorFlow and Keras formed the core deep learning infrastructure, with the 

architectural relationship depicted in Figure 3.4 The installation and configuration 

followed established protocols (Figures 3.5, 3.6), utilizing the Sequential API for model 

construction (Figure 3.7). The layer hierarchy, illustrated in Figure 3.8, demonstrates the 

progressive feature extraction and transformation pipeline. 

 

Figure 7. 

NumPy installation 

 

Figure 8. 

NumPy importation 

 

Figure 1. 

Tensorflow & Keras architecture 

 

Figure 9. 
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 Installation of TensorFlow 

Figure 10. 

Installation of Keras 

Supporting Libraries 

Scikit-learn provided essential machine learning utilities for dataset splitting, 

performance metrics, and confusion matrix generation (Figures 3.9, 3.10). Matplotlib 

enabled comprehensive visualization of training progress, results, and analytical 

metrics (Figures 3.11, 3.12), with detailed plot anatomy shown in Figure 3.13. 

 

Figure 11. 

Code snippet of keras sequential API 

 

Figure 12. 

Architecture of sequential model layers 

 

Figure 13. 

Architecture pipeline of scikit-learn 
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Figure 14. 

Installation of scikit-learn 

 

Figure 15. 

Code snippet of scikit-learn 

Deep Learning Architectures 

Convolutional Neural Network Fundamentals 

The study employed CNN architectures based on their proven efficacy in image 

classification tasks. The fundamental CNN architecture, illustrated in Figure 3.14, 

processes input images through successive convolutional and pooling layers to 

extract hierarchical features, followed by fully connected layers for classification. The 

complete experimental workflow is summarized in Figure 3.15. 

 

Figure 16. 

Architecture of deep learning 
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Figure 17. 

Architecture of CNN model 

Custom Sequential Model 

Model: "sequential" 

_________________________________________________________________ 

Layer (type)                 Output Shape              Param #    

================================================================= 

conv2d (Conv2D)              (None, 198, 198, 32)      896        

_________________________________________________________________ 

max_pooling2d (MaxPooling2D) (None, 99, 99, 32)        0          

_________________________________________________________________ 

conv2d_1 (Conv2D)            (None, 97, 97, 64)        18496      

_________________________________________________________________ 

max_pooling2d_1 (MaxPooling2D) (None, 48, 48, 64)      0          

_________________________________________________________________ 

conv2d_2 (Conv2D)            (None, 46, 46, 64)        36928      

_________________________________________________________________ 

flatten (Flatten)            (None, 135424)            0          

_________________________________________________________________ 

dense (Dense)                (None, 64)                8667200    

_________________________________________________________________ 

dense_1 (Dense)              (None, 2)                 130        

============================================================ 

Total params: 8,723,650 

Trainable params: 8,723,650 

Non-trainable params: 0 

ResNet50 Implementation 

The ResNet50 architecture was implemented using transfer learning principles. The 

model loading and configuration followed the structure shown in Figure 3.16. Data 

augmentation techniques (Figure 3.17) were employed to enhance model 

robustness, including: 
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⚫ Random rotations (±20 degrees) 

⚫ Horizontal and vertical flipping 

⚫ Zoom and shear transformations 

⚫ Brightness and contrast adjustments 

The base ResNet50 model was supplemented with custom classification layers: 

base_model = ResNet50(weights='imagenet', include_top=False, input_shape=(224, 

224, 3)) 

x = base_model.output 

x = GlobalAveragePooling2D()(x) 

x = Dense(1024, activation='relu')(x) 

predictions = Dense(2, activation='softmax')(x) 

model = Model(inputs=base_model.input, outputs=predictions) 

Figure 18. 

ResNet50 model loading 

Figure 19. 

Data augmentation 

VGG16 Architecture 

The VGG16 model was implemented with its characteristic uniform architecture of 3×3 

convolutional filters (Figure 3.18). The model shown in Figure 3.19, maintaining the 

original architectural principles while adapting the final layers for binary classification. 

 

Figure 20. 

Libraries used in VGG16 model  
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Figure 21. 

Flowchart of the model 

Training Configuration 

All models were trained with consistent hyperparameters to ensure fair comparison: 

⚫ Epochs: 10 

⚫ Batch size: 3 

⚫ Optimization algorithm: Adam 

⚫ Learning rate: 0.00 

⚫ Loss function: Categorical Cross entropy 
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⚫ Train-validation split: 80-20% 

The training process monitored key metrics including accuracy, precision, recall, and 

F1-score, with early stopping implemented to prevent overfitting. The comprehensive 

experimental design ensured rigorous evaluation of each architecture's capability for 

maize seed quality classification. 

RESULTS AND DISCUSSION 

This study evaluated the efficacy of three convolutional neural network (CNN) 

architectures for the binary classification of maize seeds into "pure" and "broken" 

categories. The models were trained and validated on a dataset of over 30,000 RGB 

images. The performance of the custom CNN Sequential Model, ResNet50, and 

VGG16 is summarized below, with a comparative analysis provided in Table 2. 

Table 2. 

Model Epochs Batch Size Accuracy Key Observation 

CNN 

Sequential 
10 32 86% 

Robust performance with a simpler 

architecture. 

ResNet50 10 32 80% 
Struggled with convergence, leading to 

higher false negatives. 

VGG16 10 32 93% 

Superior feature extraction and 

generalization, achieving the best 

performance. 

Custom CNN Sequential Model 

The custom Sequential model demonstrated a strong learning capability, achieving 

a final accuracy of 86%. The training and validation curves (Fig. 20) show a steady 

convergence indicating effective learning without significant overfitting [1]. The 

classification report (not shown) revealed balanced precision and recall for both 

classes. The confusion matrix (Fig. 21) confirms a reliable performance with a low and 

balanced rate of misclassification between the two categories [24]. 

 

Figure 22. 

Training epochs of CNN sequential model 
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Figure 23. 

Confusion matrix of CNN sequential model 

ResNet50 Model 

The ResNet50 model yielded the lowest accuracy among the three models at 80%. Its 

training process was less stable, as evidenced by the fluctuating validation loss (Fig. 

23) suggesting potential challenges in optimizing the deep residual network with the 

given dataset size [2]. Critically, the confusion matrix (Fig. 24) shows a higher count of 

false negatives, meaning a significant number of broken seeds were misclassified as 

pure. This is a major drawback for a quality control system where detecting defects is 

paramount. 

 

Figure 24. 

Classification report of ResNet50 model 

The VGG16 model significantly outperformed the others, achieving a peak accuracy 

of 93%. The training progress was exemplary, with smooth and closely aligned training 

and validation curves for both accuracy and loss (Fig.25), indicating excellent 

generalization [3]. The model's predictions on a sample of test images (Fig. 3c) were 

consistently correct. 
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Figure 25. 

Confusion matrix of CNN sequential model 

VGG16 Model 

The corresponding confusion matrix (Fig. 26) demonstrates a high number of true 

positives and true negatives, with minimal errors, underscoring its reliability for this 

specific task [25]. 

 

Figure 26. 

Training and validation accuracy graph of VGG16 model 

 

Figure 27. 

Confusion matrix of VGG16 model 
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DISCUSSION 

The results conclusively demonstrate the viability of deep learning for automating 

maize seed quality assessment. The better performance of VGG16 model (93% 

accuracy) is credited to the effective architecture of the model, which itself is 

supported by transfer learning [3]. Conversely, the lower performance (80% accuracy) 

of the deeper ResNet50 model might have been due to undertraining or possibly just 

a lack of enough and diverse data to make full use of the complex architecture in the 

model [2]. The CNN model with its customized version was a powerful baseline (86% 

accuracy), which demonstrated the fact that even simplistic architectures can 

provide a substantial advantage over manual ones. The article concurs with the 

results of Zhao et al. [4], who were able to use CNNs to detect seed defects in 

soybean, and with the results of the present article, which prove that such methods 

can be transferred to maize [29,30]. Its great precision and strong performance 

indicate that VGG16 could be used in a real-time and automated system of seed 

sorting to drive up efficiency, lower labor expenses, and enhance the agricultural 

supply chain of seeds in general [26]. 

CONCLUSION 

This Study has managed to show that deep learning can be used in automated and 

precise classification of maize seeds, which is a crucial activity in assuring crop 

quantity and quality in the Pakistani agricultural industry. The three CNN architectures 

that were tested were a custom Sequential Model, ResNet50, and VGG16, with 

VGG16 prevailing as the best model to be used by a considerably high percentage 

of 93 outperforming the Sequential Model (86%) and ResNet50 (80%). This good 

performance highlights the efficiency of transfer learning in this particular agricultural 

computer vision problem. The usage of such deep-learning-based system has 

substantial practical implications. It allows a quick, high degree of precision with the 

quality of the seeds and this translates directly to better quality control, farmers are 

able to save money and minimize the chances of crop failure as the seeds that are 

planted are of high quality [28]. Moreover, it can be mentioned that the possibility of 

the early diagnosis of diseases and the possibility to offer a stable, efficient product 

may enhance the competitiveness of a farmer in the market. Overall, this study 

confirms that deep learning, specifically, the VGG16 architecture, is a strong, 

effective, and affordable option of the automation of maize seed quality 

identification. The suggested system has a significant potential of being incorporated 

in the real-life agricultural processes, leading to the growth of productivity and 

sustainability of seed industry [27]. The next path of work may be related to the 

implementation of this model into a physical sorting system and extending its features 

to be able to sort a broader scope of seed defects and diseases. 
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