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Maize plays a vital role in Pakistan's agriculture, but its seeds are
susceptible to damage and mold during transportation and storage,
making it essential to strengthen the quality idenfification of maize
seeds to increase crop vyield and quality. Conventionally, seed
recognition has remained inefficient and subjective despite the
improvement in machine vision technology and digital image
processing method employed in agricultural context. However, seed
testing is still the most important aspect of seed technologies. The
project was to identify pure and broken seeds with the help of deep
learning, with an RGB camera which had high precision, low error,
and accurate outputs at minimum space and cost. In order to solve
this issue, various CNN models were used to identify mixed maize
seeds as pure or broken seeds whereby the accuracy rate of CNN
Sequential Model, ResNet50 and VGG16 was 86%, 80%, and 93%,
respectively. The seed identification with the CNN models was much
better than the conventional methods, as the complex features of
the seed images are extracted and this minimizes the subjectivity of
the conventional methods. The achievements of the CNN models in

the project demonstrate the potential of deep learning in the
classification of mixed maize seeds as pure and broken. This
advancement in technology of seed identification may be a major
boost in the efficiency and reliability of seed tests in the Pak
agriculture production sector.
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INTRODUCTION

Agriculture is an important element of the Pakistan economy with high Gross Domestic
Product (GDP), employment and food security [1]. Maize (Zea mays L.) is animportant
crop in this sector since it is used as an essential food as well as animal food and
industrial products. Quality of the seeds is also of utmost importance since this directly
affects crop establishment, uniformity, and end vyield [2]. Nevertheless, the maize
seeds are very vulnerable to mechanical damage and fungal contamination during
post harvesting, storage and transportation. The germination rates of planting stocks,
seedling vigor, and the general crop productivity may be seriously impacted by the
penetration of broken or damaged seeds into the planting stock. Conventionally,
seed quality evaluation has been dependent on manual inspection and sorting a
process that is subjective in nature, labor-intensive and inefficient at that. The
traditional practices are highly subject to human mistakes and discrepancy and may
result in inadvertent sorting of poor seeds or loss of healthy ones [3]. As a result, it is
urgently necessary to have an automated, objective and quick system that can
enhance seed quality control measures. Continuous use of manual techniques in
identifying seed quality in the agriculture of Pakistan especially maize has a lot of
challenges. Such techniques are not efficient, accurate, and scalable to ascertain
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the current farming activities, which in furn would slow down the productivity and
economic gains of the farmers. An automated solution is urgently needed to
overcome the limitations of low throughput, high subjectivity, and operational
inefficiency.

The primary objective of this research is to develop and evaluate a deep learning-
based automated system for the accurate classification of maize seeds into "pure"
and "broken" categories. The specific aims are:

e To implement and train three distinct Convolutional Neural Network (CNN)
architectures—a custom Sequential Model, ResNet50, and VGG16 for binary image
classification.

e To perform a comparative analysis of these models based on performance
metrics including accuracy, precision, and recall.

e To demonstrate the feasibility of a cost-effective and space-efficient system
utilizing a standard RGB camera for high-precision seed quality assessment.

PROPOSED METHODOLOGY

This study leverages a dataset comprising over 30,000 annotated images of pure and
broken maize seeds. We employed a comparative framework, training and
evaluating three prominent CNN architectures:

CNN Sequential Model: A custom-designed network with a linear stack of
convolutional, pooling, and dense layers for hierarchical feature extraction
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Figure 1.

Architecture of CNN sequential model

ResNet50: A deep 50-layer network utilizing residual learning blocks to facilitate the
training of a very deep architecture and mitigate the vanishing gradient problem.
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Figure2.
Architecture of ResNet50 model
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VGG16: A well-established 16-layer network recognized for its uniform architecture
using small receptive fields, providing a strong baseline for image classification tasks.

VGG-16
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Figure 3.
Architecture of VGG16 model
Table 1.
Summary of Deep Learning Models Employed
Model Depth Key Characteristic
CNN Sequential Custom Linear stack of convolutional and pooling layers
ResNet50 50 layers Residual connections with identity mapping
VGGI16 16 layers Uniform architecture with 3x3 convolutions

The models were trained end-to-end using the collected image dataset to learn
discriminative features for robust classification [19]. This research contributes to the
field of precision agriculture by demonstrating a practical application of deep
learning for automated seed quality control [20]. The successful implementation of this
system offers significant benefits, including Enhanced Agricultural Productivity: By
ensuring the use of high-quality seeds, farmers can achieve better crop stands and
higher yields. Economic Efficiency by Automation reduces reliance on manual labor,
decreases operational costs, and minimizes losses from misclassified seeds.
Technological Adoption research offers an assessed framework through which
affordable, vision-based Al systems could be incorporated into the agricultural supply
chainin developing nations such as Pakistan to assist in wider initiatives of food security
and sustainable agriculture [21,22].

Existing Literature

Deep learning architectures, most notably the Convolutional Neural Networks (CNNs)
have radically altered the evolution of computer vision as it has been shown that they
can automatically learn to produce hierarchical feature representations to raw pixel
inputs. The initial pioneering research by Bayar and Stam made CNNs flexible to
specialized visual tasks by detecting manipulation artifacts [1] and further studies
expanded such functionality to various tasks such as cultural heritage preservation
and medical imaging [2.3]. The architectural development of VGGI1é into the
revolutionary ResNet50, changing the deep stacks of small convolutional filters to the
revolutionary residual connections, not only allowed more advanced feature-learning
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but also effectively addressed the issue of vanishing gradient in deep networks [4,5].In
object detection, the YOLO framework has been a revolutionary development that
transformed detection to a single regression problem, which led to the development
of increased capabilities in inference speed and competitive accuracy [6]. Further
work improved the performance of YOLO by improving its training strategies and
architecture and comparative analyzes showed its benefits in real-time use in
applications in various areas, including self-driving cars and field inspection systems
[7.8]. The multi-purpose nature of the framework is also demonstrated by its
application in other agricultural setftings, such as seed classification and quality
assessment tasks [?]. The infroduction of deep learning to agriculture has prompted
the development of precision agriculture technologies, with the first ones being large-
scale monitoring tasks implemented by the use of remote sensing [10,11]. The
application area of seed quality assessment has become one of the most promising
areas, where hand inspection has been gradually replaced by use of automated
visual inspection systems. Early solutions that employed standard machine vision and
hyperspectral imaging [12,13] have developed to involve deep learning-based
solutions that are proving highly effective in varietal classification, internal defects,
and overall assessment of quality [14,15,16].

Notably, soybean seed inspection has been used as the experimental ground in
developing advanced defect recognition, where researchers have come up with
robust frameworks to identify internal defects, external defects on the whole surface,
and quality on the whole with CNN architecture and have extended their capability
to detect dynamic variants of seeds through assessment Such solutions show potential
of automated control of quality in the seed processing activities and offer useful
methodologies that can be applied to other crops [18]. On the basis of these well-
known deep learning networks and agricultural computer vision concepts, this study
fulfills this crucial requirement of high-performance, precise and scale able seed
quality measurements in maize production systems via comparative study of various
CNN networks of pure and broken seed classification [17].

Dataset Composition and Experimental Setup

Experimental Framework and Dataset

The experimental framework was designed to systematically evaluate deep learning
models for maize seed classification. A comprehensive dataset comprising over
30,000 RGB images of maize seeds was utilized, with 26,000 images representing pure
seeds and 6,000 images representing broken seeds. The dataset was carefully curated
to ensure diverse representations of seed conditions, orientations, and lighting
variations to enhance model generalization capabilities [23].

Development Environment Configuration

The experimental setup employed Python programming language within the
Anaconda distribution environment, specifically ftailored for data science
applications. The development interface, shown in Figure 3.1, provided an integrated
platform for package management and environment configuration. Jupyter
Notebook served as the primary development environment, enabling interactive
code execution and visualization, as illustrated in Figure 3.2.
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Installed libraries in the anaconda navigator

COMPUTATIONAL LIBRARIES AND IMPLEMENTATION

Numerical Computing Infrastructure

NumPy provided the fundamental array operations and numerical computing
capabilities essential forimage data manipulation. The library was implemented using
standard installation and import protocols (Figures 3.3,) with key arrays including

® data: Image data tensor containing resized seed image
® |abels: Corresponding classification labels
® Training and validation splits (train_data, valid_data, train_labels, valid_labels)

jupyter NoewCodod-RosNOtS0 L Checkpun Yeuterday o 12 12 Iaumiased) el

Figure 6.
Jupyter notebook interface
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Deep Learning Framework

TensorFlow and Keras formed the core deep learning infrastructure, with the
architectural relationship depicted in Figure 3.4 The installation and configuration
followed established protocols (Figures 3.5, 3.4), utilizing the Sequential API for model
construction (Figure 3.7). The layer hierarchy, illustrated in Figure 3.8, demonstrates the
progressive feature extraction and transformation pipeline.

: Jupy ter NUI’I’IF"J,r Last Checkpoint: 2 minutes ago (aulosaved) # Logout
File  Edit  View Inset  Ce Kemel  Widgets  Help Trusied  # | Python 3 ipykemal) O
B + ¥ 5B 4+ + PRn B C W coe v B

In [1]: !pip install nuspy

Requirement already satisfied: mumpy in e:\softwares\anaconda\lib\site-packages (1.23.5)
In [3]: conda install numpy

Note: you may need to restart the kernel to use updated packages.

In [
Figure 7.
NumPy installation
: Jupyter MumPy Last Checkpoint 3 minutes ago (unsaved changes) ﬂ Logout
File  Edit View Inset  Ce Kemel  Widgets  Help Truste | Python 3 fipykeme!) O
B+ x5 0B 4+ pim B C W Coe v =
In [1]: !pip install numpy
Requirement already satisfied: numpy in e:\softwares\anaconda‘\lib‘site-packages (1.13.5)
In [1]: import numpy as np
In[]:
Figure 8.

NumPy importation

tf.leras

tfF.layers, tf.losses, tfumetrics, ...

Ioww —lewel T IF a0l

P L1 S W mMPLa

Figure 1.
Tensorflow & Keras architecture

Ipip install tensorflow

Figure 9.
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Installation of TensorFlow

Ipip install keras

Figure 10.
Installation of Keras

Supporting Libraries

Scikit-learn provided essential machine learning utilities for dataset splitting,
performance metrics, and confusion matrix generation (Figures 3.9, 3.10). Matplotlib
enabled comprehensive visualization of training progress, results, and analytical
metrics (Figures 3.11, 3.12), with detailed plot anatomy shown in Figure 3.13.

import tensorflow as t©f
from tensorflow.keras.models import Seguential
from tensorflow.keras.layers import Conv2D, MaxPocling2p, Flattem, Dense

# Creagte @ Sequential model

model = Sequential()

# Add layers to the model

model.add{Conv2D{32, (3, 3)», activaticon='relu', input_shape={img_width, img_height, =3))
model.add(MaxPooling2D{{2, 2)))

model.add{Conv2D{&s4, (3, 3)», activaticon='relu'))

model.add(MaxPooling2D({2, 23}

model.add{Conwv2D{128, (2, 2), activation="relu'))

model.add(MaxPooling2D( {2, 23)}}

model.add({Flatten{}}

model.add(Dense({123, activation='relu’))

model.add(Dense(1, activation="sigmoid®'}}

# Compile the model

model.compile(optimizer="adam®, loss='binary_crossentropy ', metrics=["accuracy’])

# Train the model
history = model.fit(
train_generator,
steps_per_epoch=len{train_data) // batch_size,
epochs=18,
wvalidaticn_data=valid_generator,
walidaticn_steps—len(walid_data) // batch_size
s

Figure 11.
Code snippet of keras sequential API

imput: (None. 1)
dense__1_input: Inputl _ayver
output: (None. 1)
input: (None. 1)
dense_ 1: Dense
output: (None. 2)
imput: (None. 2)
dense_ 2: Densce
output: (None. 1)
Figure 12.
Architecture of sequential model layers
’t’ """""""""""""""""""""" ‘\

Feature | | REBressor
Data —»: |Imputation— - — —  or \—> Predictions

Encoding Classifier

. e . e . e

-

Pipeline

Figure 13.
Architecture pipeline of scikit-learn
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pip install scikit-learn

Figure 14.
Installation of scikit-learn

from sklearn.model_selection import train_test_split
from sklearn.metrics impert classification_report, confusion_matrix

# Split the data inte training and validation sets
train_data, walid_data, train_labels, wvalid_labels = train_test_split{data, labels, test_size=0.2, stratify=labels, random_state:=

# Randomly select images for visualization
random_indices = random.sample(range(len(valid_data)), 10)

random_images = valid_data[random_indices]
random_labels = valid_labels[random_indices]

# Make predictions on the random images

random_images = random_images / 255.8 # Normalize the images
predictions = model.predict(random_images)

predicted labels = np.round(predictions)

# Calculate classification metrics

true_labels = random_labels

class_names = ['broken', 'pure’]

print(’'Classification Report:')
print{classification_report(true_labels, predicted_labels, target names=class_names))

# Calculate the confusion matrix
cm = confusion_matrix(true_labels, predicted_labels)
print(’'Confusion Matrix:'

print{cm)

-« »

Figure 15.
Code snippet of scikit-learn
Deep Learning Architectures

Convolutional Neural Network Fundamentals

The study employed CNN architectures based on their proven efficacy in image
classification tasks. The fundamental CNN architecture, illustrated in Figure 3.14,
processes input images through successive convolutional and pooling layers to
extract hierarchical features, followed by fully connected layers for classification. The

complete experimental workflow is summarized in Figure 3.15.
Axhxe 3x3x 0 1x1xCy
thut
@

)

Original

- . . .
1st convolutional layer
2nd convolutional layer
-l
- e e

=
Low-level feature extraction
L X X ]

Figure 16.
Architecture of deep learning
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Figure 17.
Architecture of CNN model

Custom Sequential Model

Model: "sequential"

Layer (type) Output Shape Param #

conv2d (Conv2D) (None, 198, 198, 32) 896

max_pooling2d (MaxPooling2D) (None, 99, 99, 32) 0

conv2d_1 (Conv2D) (None, 97, 97, 64) 18496

max_pooling2d_1 (MaxPooling2D) (None, 48, 48, 64) 0O

conv2d_2 (Conv2D) (None, 46, 46, 64) 36928
flatten (Flatten) (None, 135424) 0

dense (Dense) (None, 64) 8667200
dense_1 (Dense) (None, 2) 130

Total params: 8,723,650
Trainable params: 8,723,650
Non-trainable params: O

ResNet50 Implementation

The ResNet50 architecture was implemented using transfer learning principles. The
model loading and configuration followed the structure shown in Figure 3.16. Data
augmentation techniques (Figure 3.17) were employed to enhance model
robustness, including:
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® Random rotations (x20 degrees)

® Horizontal and vertical flipping

® /oom and shear fransformations

® Brightness and contrast adjustments

The base ResNet50 model was supplemented with custom classification layers:
base_model = ResNetb0(weights='imagenet’, include_top=False, input_shape=(224,
224, 3))

X = base_model.output

x = GlobalAveragePooling2D() (x)

x = Dense (1024, activation="relu’) (x)

predictions = Dense(2, activation='softmax’) (x)

model = Model(inputs=base_model.input, outputs=predictions)

# Loaod the ResNet58 model
base_model = ResNet5@(weights='imagenet', include_top=False, input_shape=(img_width, img_height, 3))

# Create the model

model = Sequential()
model.add(base_model)
model.add(Flatten())

model.add(Dense(128, activation="relu'})
model.add(Dropout(@.5))
model.add(Dense(l, activation='sigmoid'))

Figure 18.
ResNet50 model loading

# Data augmentation and normalization for training ond validation
train_datagen = ImageDataGenerator(

rescale=1. /255,

rotation_range=20,

width_shift_range=8.1,

height_shift_range=0.1,

shear_range=2.1,

zoom_range=8.1,

horizontal flip=True,

vertical flip=True

)

valid datagen = ImageDataGenerator(rescale=1./255)

Figure 19.
Data augmentation

VGG16 Architecture

The VGG16 model was implemented with its characteristic uniform architecture of 3x3
convolutional filters (Figure 3.18). The model shown in Figure 3.19, maintaining the
original architectural principles while adapting the final layers for binary classification.

: | !pip install tensorflow
'pip install numpy
!pip install matplotlib
!pip install scikit-learn
!pip install opencv-python

from tensorflow.keras.models import Sequential

from tensorflow.keras.applications import VGG16

from tensorflow.keras.layers import Flatten, Dense, Dropout

from tensorflow.keras.optimizers import Adam

from sklearn.model_selection import train_test_split

from tensorflow.keras.preprocessing.image import ImageDataGenerator
import numpy as np

import matplotlib.pyplot as plt

import os

import cv2

Figure 20.
Libraries used in VGG16 model
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Figure 21.
Flowchart of the model

Training Configuration

All models were trained with consistent hyperparameters to ensure fair comparison:

® F[Epochs: 10

® Bafchsize: 3

® Optimization algorithm: Adam

® |earning rate: 0.00

® |oss function: Categorical Cross entropy
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® Train-validation split: 80-20%

The training process monitored key meftrics including accuracy, precision, recall, and
Fl-score, with early stopping implemented to prevent overfitting. The comprehensive
experimental design ensured rigorous evaluation of each architecture's capability for
maize seed quality classification.

RESULTS AND DISCUSSION

This study evaluated the efficacy of three convolutional neural network (CNN)
architectures for the binary classification of maize seeds into "pure" and "broken"
categories. The models were frained and validated on a dataset of over 30,000 RGB
images. The performance of the customm CNN Sequential Model, ResNet50, and
VGGI16 is summarized below, with a comparative analysis provided in Table 2.

Table 2.

Model Epochs Batch Size Accuracy Key Observation

CNN ) 10 39 86% Robgst performance with a simpler
Sequential architecture.

ResNet50 10 32 80% Struggled with convergence, leading to

higher false negatives.

Superior feature extraction and
VGG14 10 32 93% generalization, achieving the best
performance.

Custom CNN Sequential Model

The custom Sequential model demonstrated a strong learning capability, achieving
a final accuracy of 86%. The training and validation curves (Fig. 20) show a steady
convergence indicating effective learning without significant overfitting [1]. The
classification report (not shown) revealed balanced precision and recall for both
classes. The confusion matrix (Fig. 21) confirms a reliable performance with a low and
balanced rate of misclassification between the two categories [24].

Epoch 1/1@

482/482 [ ] - 2525 52ims/step - loss: B8.5772
8.7839

Epoch 2/1@

482/482 [ 1 - 2755 578ms/step - loss: ©.4652 - accuracy: B8.7894 - val loss: 8.4848 - val_accuracy:
8.8367

Epoch 3/1@

482/482 [ 1 - 2665 552ms/step - loss: @.3689 - accuracy: ©8.8466 - val_loss: ©.2992 - val_accuracy:
B8.8792

Epoch 4/1@

482/482 [ 1 - 2755 571ms/step - loss: @.3483 - accuracy: 8.8588 - val_loss: @.3516 - val_accuracy:
8.8526

Epoch 5/1@

482/482 [ 1 - 274s 568ms/step - loss: ©.3332 - accuracy: 8.8634 - val loss: 8.3136 - val_accuracy:
8.8727

Epoch &/1@

482/482 [ 1 - 277s 575ms/step - loss: ©.319@ - accuracy: 8.8713 - val_loss: @.2637 - val_accuracy:
B8.0685

Epoch 7/1@

482/482 [ 1 - 3913s 8s/step - loss: @.3837 - accuracy: @.8794 - val_loss: ©.2525 - val_accuracy:
8.8984

accuracy: 8.7815 - val_loss: @.4753 - val_accuracy:

Epoch 8/1@

482/482 [ 1 - 2755 57Ims/step - loss: ©.3824 - accuracy: B8.8785 - val loss: 8.2682 - val_accuracy:
8.B8865

Epoch 9/1@

482/482 [ 1 - 2825 584ms/step - loss: @.3162 - accuracy: 8.8726 - val_loss: @.2413 - val_accuracy:
B.0649

Epoch 18/18

482/482 [ ] - 3145 658ms/step - loss: @.2858 - accuracy: 8.8865 - val_loss: ©.3248 - val_accuracy:
8.8685

Figure 22,
Training epochs of CNN sequential model
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Figure 23.
Confusion matrix of CNN sequential model
ResNet50 Model

The ResNet50 model yielded the lowest accuracy among the three models at 80%. Its
training process was less stable, as evidenced by the fluctuating validation loss (Fig.
23) suggesting potential challenges in optimizing the deep residual network with the
given dataset size [2]. Critically, the confusion matrix (Fig. 24) shows a higher count of
false negatives, meaning a significant number of broken seeds were misclassified as
pure. This is a major drawback for a quality control system where detecting defects is
paramount.

Classification Report:

precision recall Ffl-score support

broken a.ee a.ea 2.2a L=

pure 1.8a8 1.6a 1.aa 1a

micro awvg 1.8a 1.8a 1.aa 1a
macro avg a.5a a.5a a.5a 1a
weighted avg 1 .88 1,88 1.aa 1a

Figure 24.

Classification report of ResNet50 model

The VGG16 model significantly outperformed the others, achieving a peak accuracy
of 93%. The training progress was exemplary, with smooth and closely aligned training
and validation curves for both accuracy and loss (Fig.25), indicating excellent
generalization [3]. The model's predictions on a sample of test images (Fig. 3c) were
consistently correct.
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Figure 25.
Confusion matrix of CNN sequential model

VGG16 Model

The corresponding confusion matrix (Fig. 26) demonstrates a high number of true
positives and true negatives, with minimal errors, underscoring its reliability for this
specific task [25].
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Figure 26.
Training and validation accuracy graph of VGG16 model
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DISCUSSION

The results conclusively demonstrate the viability of deep learning for automating
maize seed quality assessment. The better performance of VGG16 model (93%
accuracy) is credited to the effective architecture of the model, which itself is
supported by fransfer learning [3]. Conversely, the lower performance (80% accuracy)
of the deeper ResNet50 model might have been due to undertraining or possibly just
a lack of enough and diverse data to make full use of the complex architecture in the
model [2]. The CNN model with its customized version was a powerful baseline (86%
accuracy), which demonstrated the fact that even simplistic architectures can
provide a substantial advantage over manual ones. The article concurs with the
results of Zhao et al. [4], who were able to use CNNs to detect seed defects in
soybean, and with the results of the present article, which prove that such methods
can be tfransferred to maize [29.30]. Its great precision and strong performance
indicate that VGG16 could be used in a real-time and automated system of seed
sorfing to drive up efficiency, lower labor expenses, and enhance the agricultural
supply chain of seeds in general [26].

CONCLUSION

This Study has managed to show that deep learning can be used in automated and
precise classification of maize seeds, which is a crucial activity in assuring crop
quantity and quality in the Pakistani agricultural industry. The three CNN architectures
that were tested were a custom Sequential Model, ResNet50, and VGG16, with
VGG16 prevailing as the best model to be used by a considerably high percentage
of 93 outperforming the Sequential Model (86%) and ResNet50 (80%). This good
performance highlights the efficiency of transfer learning in this particular agricultural
computer vision problem. The usage of such deep-learning-based system has
substantial practical implications. It allows a quick, high degree of precision with the
quality of the seeds and this translates directly to better quality control, farmers are
able to save money and minimize the chances of crop failure as the seeds that are
planted are of high quality [28]. Moreover, it can be mentioned that the possibility of
the early diagnosis of diseases and the possibility to offer a stable, efficient product
may enhance the competitiveness of a farmer in the market. Overall, this study
confirms that deep learning, specifically, the VGGI16 architecture, is a strong,
effective, and affordable option of the automation of maize seed quality
identification. The suggested system has a significant potential of being incorporated
in the real-life agricultural processes, leading to the growth of productivity and
sustainability of seed industry [27]. The next path of work may be related to the
implementation of this model into a physical sorting system and extending its features
to be able to sort a broader scope of seed defects and diseases.
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