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Mobile edge computing (MEC) pushes cloud resources including
computation and storage in vicinity of end devices. This effectively
reduces communication latency. However, the minimum battery
power of end devices limits the MEC performance. Integration of
Wireless power fransfer (WPT) with MEC enhances the performance
by charging the end devices simultaneously while computation
offloading. The problem lies in the variation of network state and
channels while this offloading, which reduces the overall
computation rate. To this end, in this paper, we aim to maximize the
computation rate of whole MEC network using deep learning. We
use a Deep Neural Network which learns from multiple episodes and
decides whether to offload the task or not based on network state.
This binary decision leads to remote execution of the task in case of
optimal network state, and if not optimal, then leads to local
execution. The experiments and results validate the effectiveness of
our proposed framework.
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INTRODUCTION

Smart devices and sensors can only store limited energy, so they need to be charged
repeatedly, which isn't always possible. Thanks to computational offloading and WPT,
smart gadgets can confrol how much energy they use. By moving computation to
cloud servers, smart devices can use less energy. Efficient computational offloading in
MEC [1, 2] is a powerful way to lower the latency limits that are usually associated with
geo-distributed cloud computing. Cloud servers handle programs and parts of
programs that require a lot of processing power. This lets smart devices do more while
keeping their batteries alive. When deciding whether to offload work or do it locally, it
is important to look at how much energy is used and how much it costs to run mobile
devices [3]. On the other hand, sending computing tasks to cloud servers may slow
down transmission [6, 4] and cause security and privacy problems [4, 5]. A MEC server
is put close to end devices to get around latency limits and shorten the amount of time
it takes for data to be sent [7, 8]. Edge computing optimizes and controls energy cloud
systems in a smart way, which makes them safer and more reliable [?, 10]. On the other
hand, the performance of smart devices for end users is still limited by how much
energy they use and how quickly their batteries die. WPT has been proposed as a
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feasible solution to the energy consumption and battery depletion issues. WPT charges
neighboring devices without a cable power connection by ufilizingtechniques such as
inductive coupling and MRC. WPT can also persuade intelligent devices to offload
computation to neighboring edge servers. In a wireless context, researchers presented
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Figure IWPT-MEC Mechanism

an approach for combining WPT with MEC computational offloading to MEC servers
[11]. The WPTidea is depicted in Figure 1.1 [9], in which end devices get wireless power
from a BS linked with a MEC server and are instructed to offload work to the edge
server. Endpoints connected to the MEC server benefit from the WPT. This method may
be used to charge smart devices from access points that support WPT (AP).

Several studies have found that smart devices use less energy when they use MEC
computational offloading [12, 13]. MEC offloading can help smart devices finish jobs
faster, use less energy, and keep their batteries charged longer. In the same way, WPT
helps smart devices for end users keep their functionality while extending their battery
life [14]. [15] talked about how charging smart devices could give them a reason to
send their computing tasks to a nearby MEC server. For these gadgets to work, they
need electricity from BS. [16] Considered a multi-antenna access point (AP) that sends
wireless power to smart devices and lets them use that power to send their work to the
MEC server or run locally.

We aim to maximize the computation rate of overall MEC system using deep learning
approach. Further, We aim to increase the battery life of end devices that perform
repetitive operations by combining an access point with a MEC server that broadcasts
WPT to these end devices. We coordinate periodic tasks on the end device using deep
learning approaches to boost computation performance and decrease task
execution time.

RELATED WORK

To save energy, dual band simultaneous wireless information and power fransmission
(SWIPT) was created. It uses a base station (BS) and an edge server to send power to
end devices [11]. In dual band mode, the properties of both the low frequency (LF)
band and the high frequency (HF) band were studied. The LF band is used to send
data over long distances and send energy over short distances. The HF frequency, on
the other hand, is used to send data over short distances. In terms of channel resource
allocation and energy harvesting, the suggested dual-band system was both efficient
at energy harvesting and fair to all users. Wang et al. [15] showed a multiuser MEC
system in which a BS is connected to a mobile edge server that gives wireless power
to end mobile devices to encourage them to share tasks. The authors came up with
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an optimization problem that maximizes the usefulness of data while minimizing the
amount of energy used by the operator. The authors (16) made a TDMA-based access
point with mulfiple antennas that charges end devices and uses the collected energy
for each end device's local processing or job offloading at the MEC server (TDMA).
Researchers worked together to improve CPU frequencies, time distribution between
users, offloading bits at the end device, and energy beam-forming at the access point
(AP). Article 22 describes a way to charge mobile devices that improves performance
by using energy harvesting technology and low latency. This method cut the cost of
execution by a lot, which was missed in earlier studies, but it made latency and energy
use go up because the end device had to wait longer. System performance was
made sure by taking info account the costs of running the system and using less
energy. [23] talked about research on UAV systems that use binary and partial
offloading modes. By making communication and processing resources for UAV-
enabled devices that run on wireless power, the rate of calculations was actually sped
up. To get a high processing rate, the researcher used both partial and binary
offloading. By assigning CPU cycles and frequencies together, the suggested study
made users' experiences fairer. Also, these CPU cycles made it easier for more users to
get to the top of the list.

[24] looks into a cooperative MEC system that can be controlled by UAVs wirelessly. An
energy transmitter (ET) and a MEC server are put on a UAV to power and process
sensor equipment (SDs). The SDs who are good at their jobs want to use the UAV and
the SDs who aren't doing anything nearby to code. Combining the CPU frequencies,
tfransmission power, number of offloading, and flight path to lower the UAV's overall
energy consumption leads to an optimization problem. A sequential convex
approximation-based strategy is used to solve a problem thatis not convex. Given how
hard it is fo do the math, a deconstruction and iteration-based method is also shown
to be a good choice. [25] tries to get the UAV to send as many completed task input
bits and their weighted sum to end devices as possible. These unmanned aerial
vehicles (UAVs) get their power from the AP and then send it to the end devices
wirelessly. This lets the end devices do their jobs or send their work to the MEC server.
The authors suggested using a block-coordinated descending method to solve the
non-convex weighted sum job input bits maximization problem in a continuous way.

Using binary offloading mode, coupled optimization of mode selection (i.e., local
execution or offloading), fransmission time during WPT, and task offloading, [26] and
[27] increased the rate at which wireless devices could do computations. Researchers
looked into decoupled optimization and assumed that computing mode selection is
already known. They then came up with a bi-section strategy for getting the best time
allocation to solve the problem of transmission fime allocation and multi-user mode
selection being tied together. The authors of [28] used binary offloading and NOMA
for offloading users to speed up computations in the WPT-MEC system. Researchers
looked into the fact that the highest rate that can be reached with TDMA and NOMA
is the same, but NOMA is better at making sure that all users get the same rate. Wang
et al. [29] used a hybrid WPT-MEC system with TDMA for work offloading and multi-
antenna AP broadcast power to end devices to get the most out of the computation
rate. The author made sure that energy beam-forming, task offloading, and time
allocation were all done in the best way possible.
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Proposed System Model

We established a framework that covers all of the challenges described after doing a
full literature research and determining the problem statement. The proposed solution
provides the best response to the problem description and answers all questions
adequately. We explained our proposed system and the methods we used to simulate
it in this part. We first used the near field WPT technology to transmit energy from the
AP to end devices. Second, we used Python- based tensor flow and machine learning
methodologies, as well as other libraries. Following these simulations and code
execution, we compare our findings to those of currently used approaches. Based on
this comparison, we discovered that our proposed technique produces better results.
After the detailed literature review and identification of problem statement we
proposed our framework that answers all the question raised in the problem statement.
Proposed solution effectively answers all the questions and provides optimal solution to
the problem statement. Magnetic resonant coupling was used to simulate energy
transfer from an AP (active circuit capable of broadcasting energy) to end devices
using passive circuits in order to address the problem of battery depletion (inductor
and capacitors to store energy). To experiment with network protocols, we employed
the embedded WPT technique with the ns-3 simulator.

The access point (AP) contained several transmission coils (TX) in our simulation, and
each wireless device had a single receiving coil (RX). A test message is sent when the
power of a device falls below a certain threshold. Energy is transmitted to the end WDs
on the response, which store these watts at random intervals by moving the transmitter
coils and matching the impedance between RX and TX. To meet the battery drainage
issue, we chose magnetic resonant coupling for simulation of energy from AP (Active
circuit that has the power of broadcasting energy) to end devices having passive
circuit (inductor and capacitors to store energy). We used ns-3 simulator and
embedded WPT approach with it to work with network protocols. In our simulation, we
used number of fransmitting (TX) coils at the AP, and a single receiving (RX) coil with
each wireless device. Whenever, a device power becomes less than a threshold, it
broadcast a test message. On the response, transmitter coils moves around and
matches impedance between RX and TX, energy is transferred to end WDs in and
these devices store these watts periodically at a random time intervall.

Wireless Power Transfer (WPT) is a technique that enables the wireless movement of
electrical energy from one location to another without the need of wires or cables. The
idea of "broadcasting" or "wireless power fransmission," which refers to the technique
of distributing electrical energy over a long distance using electromagnetic waves, is
a major component of WPT. In WPT broadcasting, a power source, often a power
amplifier or oscillator, is used to create an alternating current (AC) signal at a certain
frequency. This alternating current signal is then sent through an antenna or transmitter
coil, which turns the electrical energy into an electromagnetic field that radiates out
into the surroundings. One or more receiving coils, normally positioned some distance
distant from the transmitter, can receive the electromagnetic field created by the
transmitter coil.

These receiving coils are tfuned to the same frequency as the transmitter coil, allowing
them to take up the electromagnetic field and transform it back into electrical energy.
WPT employs two forms of broadcasting: near-field and far-field broadcasting.
Magnetic induction is used in near-field broadcasting to tfransmit energy across small
distances. This technology is frequently employed in situations where the transmitter
and receiver are near to each other, such as wireless charging of electrical gadgets.
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The magnetic field generated by the transmitter coil is strong enough to induce a
current in the receiving coil, allowing electrical energy to flow between the two coils.
Far-field broadcasting, on the other hand, uses electromagnetic radiation to convey
energy across greater distances. This approach is frequently used in situations where
the transmitter and receiver are many meters distant, such as wireless power delivery
for electric cars. The electromagnetic field generated by the transmitter coil radiates
in all directions, and the receiving coil must be built to capture as much of this energy
as feasible. One of the most difficult aspects of WPT broadcasting is ensuring that the
tfransmitted energy is efficiently received by the receiving coils. This necessitates careful
design of both the fransmitter and receiver coils, as well as the employment of
sophisticated control systems to guarantee that the broadcast signal's frequency and
amplitude are adjusted for maximum power fransmission. Notwithstanding these
obstacles, broadcasting remains an important component of WPT and a necessary
technology for the development of new applications such as wireless charging,
electric cars, and renewable energy. As research in this subject confinues, we may
expect to see additional breakthroughs in the design and execution of WPT
broadcasting systems, leading to more efficient and effective means of wirelessly
delivering electrical energy over larger distances.

Coordination of periodic tasks

The techniques for conducting and coordinating recurrent tasks on wireless devices
are as follows.

Local Computation (Without Coordination)
Deep Learning Coordination (MB)
Algorithmic Coordination (DLPTO)

Local Computation (No Coordination)

Each WD in local computing completes its duty at a rate of 105 bits per second.
Periodic tasks are not synchronized in this situation, and wireless channels that change
over time are ignored. In local computation each WD computes its task locally with a
computation rate of 105 bits/s. In this case there is no coordination of periodic task and
time varying wireless channels are ignored. Local computing is a computational
paradigm that focuses on distributed and decentralized data processing.
Computations are done on local data in this paradigm, where local refers to a portion
of data stored on a single computer or node in a distributed system. Since calculations
are conducted on data that is instantly accessible, rather than waiting for all data to
be aggregated in a single place, local computing provides for efficient processing of
big datasets while minimizihg communication overhead.

Local computing is particularly beneficial when the data is too vast to be stored and
processed centrally. In such instances, local computing allows data to be processed
on dispersed nodes, with each node processing a piece of the data stored locally.
Because the work is split among numerous nodes and the results are pooled
afterwards, this strategy can yield in a considerable decrease in overall processing
time. One of the primary benefits of local computation is its capacity to handle data
in a distributed and decentralized fashion. This allows for parallel processing since
numerous nodes may conduct computations concurrently, boosting total processing
speed. Furthermore, because just the relevant data is transferred rather than the
complete dataset, local computing can decrease the quantity of data that must be
transmitted between nodes.
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This has the potential to minimize communication overhead, which is a major
bottleneck in many distributed systems. Several practical uses of local computation
exist, including data analysis, machine learning, and optimization. For example, in
machine learning, local computing is used to train models on distributed data, where
each node analyses a piece of the data and changes the model parameters locally.
The modelis thus frained in a distributed and parallel fashion, which can greatly reduce
total training time. To summarize, local computing is a strong computational paradigm
that permits distributed and decentralized processing of big datasets. Local
computing has several practical applications in machine learning, data analysis, and
optimization, and it is a necessary tool for data processing in distributed systems.

Problem Formulation

We proposed a deep learning based algorithm (DLPTO) that is based on deep neural
network (DNN) approach. As we have considered time varying channels, our model
takes input channel gain at each tagged time frame, selects the best action among
multiple offloading actions and updates the DNN memory with best offloading actions.
In more detail, DLPTO consist of two phases. In first phase data samples are collected
including channel gain and DNN first outputs a normal offloading actions in which one
devices executes task locally and other one offloads. For this purpose, each device is
assigned a weight below 0.5 or above 0.5. A deep learning algorithm (DLPTO) based
on a deep neural network (DNN) technique was developed. Because time-varying
channels were considered, our model takes the input channel gain for each tagged
time frame, chooses the best offloading action from a set of options, and updates the
DNN memory with the best offloading options.

Deep Learning Periodic Task Offloading (DLPTO) is a strategy for increasing deep
learning task performance and energy efficiency on mobile and embedded devices.
DLPTO entails offloading compute-intensive processes to remote servers or cloud-
based platforms while retaining local control over task execution on mobile and
embedded devices. Speech recognition, natural language processing, and picture
recognition are examples of tasks where DLPTO can be exiremely effective. Mobile
and embedded devices can save resources by outsourcing certain activities to more
capable servers while still benefiting from the accuracy and speed of deep learning
algorithms. DLPTO operates by a mix of prediction and preemption.

Initially, the DLPTO system predicts the future execution of a periodic job using machine
learning methods. The job is then offloaded to a remote server before it is scheduled
to run. This permits the distant server to finish the work, relieving the local device's
resources. After the distant server finishes the job, the result is retfurned to the local
device for further processing. DLPTO has the potential to greatly increase deep
learning task performance and energy economy on mobile and embedded system:s.
Nevertheless, a stable network connection and a high level of coordination between
the local device and the distant server are required. DLPTO is a thriving research field,
with continuing efforts to build more efficient and effective offloading mechanisms for
deep learning applications.

The DLPTO is split intfo two stages. DNN takes data samples, including channel gain, in
the first phase, and then provides a typical offloading action in which one device
performs the operation locally and another offloads. As a result, each gadget has a
weight greater than or equal to 0.5. The technique for creating a common offloading
action is as follows.
ali= 0 a;<05
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Wherei=1, 2, 3...... N, and ‘a’ denotes the offloading action. Binary value 1 suggests
offloading, while binary value 0O indicates local execution. After generating a normal
offloading action, it is quantized info K binary offloading actions, where K = 2N.
Computation rates for each action are then determined based on the channel state,
and the best one with the highest computation rate is picked. In the second phase,
the best offloading actions update DNN's memory. To conform to the memory
restriction, older best actions are replaced with new ones. DNN uses the optimum
offloading action to achieve maximum processing speed and maintain its memory
updated during these periods. The DLPTO pseudopod is depicted below. To meet the
memory constraint, new best actions are replaced with older ones. Through these
phases DNN keeps it memory updated with best offloading action and achieves
maximum computation rate. Following is the pseudopod of DLPTO.

DLPTO Algorithm

Provides optimal offloading action between local and remote Computation

Input: Channel Gain ht at each time frame T

Output: Best Offloading Action at the Tth time frame with optimal resource allocation
Initializing DNN parameters (Random) and with empty memory

Set the lteration number N 3. For t=1,2,3... N do

Generate Number of Normal Offloading Action an

Evaluate Computation rates C for all actions ( ht, at)

Select the best action at = max (ht, at)

Return (ht, at) to memory for updating

Train the DNN with (ht, at) and update Log loss |

End

Our model has one layer that goes in, two layers that stay hidden, and one layer that
goes out. There are 80 and 20 neurons in each of the hidden layers. We used the RelLU
activation function for the first hidden layer. For the second hidden layer, we used tanh,
and for the output layer, we used sigmoid. But the system can be easily made bigger
by adding more neurons to help train better. We used the Keras and Tensorflow tools
to train our DNN model. Our model is made up of one input layer, two hidden layers,
and one output layer. There are 80 and 20, respectively, neurons in each hidden layer.
The RelU activation function was used for the first hidden layer. The Tanh activation
function was used for the second hidden layer, and the sigmoid activation function
was used for the output layer. Just add more neurons to the system to make training
go faster. We used preprocessed CD technique data to synchronize periodic actions
[26]. 30,000 samples are included in the preprocessed data. Each data sample
contains Wireless channel gain, Computing mode, Transmit fime of wireless device and
Sum of computation rates
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Figure 2Proposed system model
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RESULTS AND DISCUSSION

We examined our findings and evaluated our system in this chapter. We demonstrated
the effectiveness of our suggested method using simulated logs. We also included
graphics to compare our suggested system against alternative options.

Experimental Setup

We used the open-source ns-3 simulator to simulate network protocols. In order to allow
numerous offloading mechanisms, we integrated WPT simulation with ns-3. In order to
assess performance, we estimated the WDs' power consumption per hour. This
consumption ranges from 5 mW to 150 mW depending on the design of the final WDs.
Tensor-Flow was used in conjunction with the Python programming language to
simulate, code, and evaluate computation rate and training log loss performance. We
used ns-3 simulator which is an open source tool for the simulations of network
protocols. We embedded WPT simulation with ns-3 to work with different offloading
protocols. To measure the performance we estimated the power consumption of WDs
in watts/hour. Normally, this consumption relies between 5 mw-150 mw depend upon
the architecture of end WDs.

On the other side, we used python language with tensor-flow for simulation, coding
and performance measurement of computation rate and training log loss. In order to
allow numerous offloading mechanisms, we integrated WPT simulation with ns-3. In
order to assess performance, we estimated the WDs' power consumption per hour. This
consumption ranges from 5 mW to 150 mW depending on the design of the final WDs.
Tensor- Flow was used in conjunction with the Python programming language to
simulate, code, and evaluate computation rate and training log loss performance. We
evaluated the performance of our DLPTO algorithm to that of numerous deep learning
benchmarking systems. We compared the performance of our DLPTO algorithm by
using deep learning technique with other benchmarks schemes. We evaluated the
performance of our DLPTO algorithm to that of numerous deep learning benchmarking
systems.

Performance Evaluation Parameters

We divide this section into following three subsections to categorize our performance
evaluation setup.

* Battery Performance

e Computation Rate Performance
* DNN Performance

* Battery Performance

We use WPT to efficiently tackle the WDs' battery draining issue. We investigated and
showed the power consumption of two WDs with and without WPT. Figure é shows a
comparison of WD battery power and WPT efficacy across different time periods. We
compared the battery power of two WDs in the following graph by reporting the power
consumption in watts/hour. The graph indicates that WDs without WPT may run out of
battery power during computation if they do not receive wireless power from the AP.
WPT, on the other hand, ensures that WDs are constantly charged so that they can
perform their duties without interruption. We plotted the power consumption of two
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WDs with and without WPT. Following Figure 6 shows the comparison between battery
power of WDs and effectiveness of WPT in different time durations. In the following
figure, we compared the battery power of two WDs in which we plotted the power
consumed in watts/hour. Graph shows that without WPT, a WD can be dead after a
time span depending upon battery power of this WD during computation if these
devices do not receive wireless power from the AP. However, WPT ensures the
continuous charging of WDs so that these devices could process their task without any
power interruption.

We've also included the simulation and data log in the diagram below. This graph
depicts the constant, uniform, and adequate charging of WDs. Figure 6 shows the
comparison between battery power of WDs and effectiveness of WPT in different time
durations. In the following figure, we compared the battery power of two WDs in which
we plotted the power consumed in watts/hour. Graph shows that without WPT, a WD
can be dead after a time span depending upon battery power of this WD during
computationif these devices do not receive wireless power from the AP. However, WPT
ensures the continuous charging of WDs so that these devices could process their task
without any power interruption.

Computation Rate Performance

To enhance the computation rate per channel, DNN is used. The suggested Python-
coded and Tensor-flow-imported approach (DLPTO) takes the channel gain at each
time frame as input and uses experience to frain a DNN. The DLPTO generates
offloading actions for each input while concurrently updating the DNN memory and
chooses the best one to offload. Using this training method, DLPTO effectively
enhances the calculation rate for each input. Our proposed system (DLPTO) is coded
in python and imported tensor-flow that takes channel gain at each time frame as
input and trains DNN through experience. For every input, DLPTO generates offloading
actions and selects the best one for offloading and also updates the DNN memory
with this action. Through this training approach, DLPTO effective increases the
computation rate for each input. Following Figure shows the performance gain with
DLPTO. Figure 2 demonstrates the improved performance brought about by DLPTO.

moputation Kate

Figure 3Average Computation Rate
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A blue graph represents the moving average of calculation rate as the number of time
frames increases.

- ————
. ————

Figure 4Effectiveness of WPT

The simulation produces a per-channel average calculation rate of 0.98, which is close
to real-fime response.

Keep in mind that we evaluated 1000 time intervals; if the time intervals are changed,
the computation rate will change accordingly.

The maximal calculation rate (bits/s) of DLPTO coordination was compared to that of
the MB method and local computing. The MB method efficiently maximizes the
computation rate with a high number of devices. However, DLPTO performs best when
there are between 10 and 30 devices. We compared the maximum computation rate
(bits/s) achieved by DLPTO coordination with MB algorithm and local computing. MB
algorithm effectively maximizes the computation rate with a large number of devices.
However, when devices are in between10-30, DLPTO achieves best performance.
Figure 9 shows the effectiveness of our algorithm compared to MB and local
computing. Figure 9 compares our algorithm's performance to that of MB and local

computing.
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The amount of time frames impacts the DLPTO's computation speed. Because this
method learns from experience, increasing the number of time frames boosts
calculation performance while reducing log loss. Figure 10 demonstrates the effects of
time frames, with the first bar reflecting an increase in calculation rate as the number
of frames increases and the second bar representing a decrease in calculation rate
as the number of frames decreases. Number of time frames affects the computation
rate of the DLPTO. As this algorithm learns from experience, increasing the number of
time frames improves the computation rate with minimizing log loss and vice versa.
Figure 10 shows the impact of time frames where first bar denotes the improvement of
computation rate with maximum number of time frames and second bar denotes the
computation rate affected by less number of frames. Last bar denotes the
computation rate influenced by minimum number of frames. The last bar reflects the
computation rate as influenced by the fewest amount of frames.

Log Loss

Time Frames

Figure 7Log Los

3,5
Q.8
(= By
[ &M =
0.5
.4
01,5

Computation Rate

-

0.2
.1

1O MY (NS IS8 ] (NS
Tirme Frame

Figure 8Impact of Time Frames on Log Loss

DNN Performance

As the suggested system learns via experience, we estimated the cross entropy loss for
our DNN model. This loss is also known as the training or log loss. Cross entropy is a type
of loss function in which the loss is determined by how far each predicted value
probability deviates from the intended output value, which can be 0 or 1. Over time,
our model learns new skills and develops its own training schedule. Since the proposed
system learns from experience, we calculated the log or training loss, also called cross
enfropy loss, for our DNN model. Cross entropy is the loss function where each
predicted value probability is compared to the actual value desired outputO or 1, and
loss is calculated based on how far away it is from the actual value. Our model slowly
learns and gets better as it uses itself. The log loss for our proposed model is shown in
the next figure. The graph below depicts the log loss for our suggested model. We
provided a log loss comparison in proportion to the amount of fime frames in our DNN
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model. Due to DNN's limited or maximum experience gain, the number of fime frames
has a significant impact on this training loss. Because of the large number of time
frames, the first bar in Figure 12 shows a rapid decrease in log loss, which becomes
practically constant at 0.1. We plotted the comparison of log loss depending upon the
number of time frames in our DNN model. Number of time frames highly influences this
training loss because of minimum or maximum experience gin by DNN. In Figure 12, first
bar denotes quickly decrease of log loss and becomes almost stable at a certain point
0.1 due to large number of time frames. However, second and third bar presents the
gradual increase in log loss and also unstable due to minimum number of time frames.
However, because to the limited number of time frames, the second and third bars
show a continuous increase in log loss and are similarly unstable.
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Figure 9Impact of Time Frames on time consumption

The duration of DNN processing is influenced by time frames. The smallest number of
time frames has little influence on processing performance but has a significant effect
on ftime consumption. A large number of time frames improves calculation
performance but dramatically increases the time necessary to finish the task as DNN
learns from deeper layers and experience. The graph below shows how time frames
affect the overall amount of time DNN takes. Time frames also impacts the time
consumption for DNN processing. Minimum number of time frames slightly impacts the
computation rate, however greatly influences the time consumption. Large number of
time frames in improves the computation rate as DNN learns from inner layers and
experience, however consumes much more time to complete. Following graph shows
the impact of fime frames on total time consumption of DNN.
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Figure 10Impact of number of neurons on computation rate

In order to evaluate DNN's performance, we compared its essential parameters. We
used 120 and 80 neurons in the DNN's two hidden layers, respectively. Because our
DNN model is totally coupled, the number of neurons has a significant impact on the
time of the learning operation. Figure 14a shows how having more neurons has minimall
effect on calculation speed, which may be ignored. Figure 14-b shows that using fewer
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neurons speeds up the execution of a DNN. To measure the performance of DNN, we
also compared the inner parameters of DNN. We have used 120 and 80 neurons in two
hidden layers of DNN respectively. As our DNN model is fully connected, more number
of neurons slightly improves the computation rate, however it greatly influences the
time consumption in learning process. Figure 14-a shows the impact of more number
of neurons on computation rate which is minor, hence can be ignored. However, figure
14-b shows that using fewer number of neurons reduces the time consumption of
running DNN.
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Figure 11Impact of number of neurons on time consumption

CONCLUSION

The ability to charge smart devices through Wireless power transfer (WPT) from a base
station in combination with a Mobile Edge Computing (MEC) server broadens MEC's
use. Furthermore, this thesis provided a thorough examination of intelligent online
compute offloading in mobile edge networks. The research addressed the difficulties
in effectively managing computation offloading in mobile edge networks and
suggested a unigue intelligent framework for efficient computation offloading. To
optimize the decision-making process for computing offloading, the framework
employs machine learning techniques. The experimental findings suggest that the
proposed framework is successful at optimizihg computation offloading and
enhancing mobile edge network performance. The framework can adapt to
changing network circumstances and workload demands, guaranteeing effective
resource use and enhanced QoS for end users. This thesis' contributions go beyond the
creation of the intelligent framework.

The paper also contributes to the larger field of mobile edge computing research by
offering a beftter understanding of the compute offloading process in mobile edge
networks. The suggested framework may be used in a variety of application situations,
including real-time data processing and Internet of Things (loT) applications. In
conclusion, this thesis shows the promise of intelligent compute offloading in mobile
edge networks and lays the groundwork for future study in this field. The proposed
architecture provides an effective solution to the issues associated with compute
offloading in mobile edge networks, and it has the potential to greatly increase
network performance and efficiency.

The increasing popularity and energy and power consumption of smart devices has
increased the need for MEC. Nonetheless, the demand for recurring end-device tasks
such as fraffic monitoring and surveillance is growing, necessitating longer battery life
and more computational power from these devices. End devices, such as sensors,
require more energy during periodic offloading than during non-periodic activities. In
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order to enhance the energy restrictions of end devices, these periodic efforts must be
coordinated via joint WPT. By coordinating periodic task offloading, we investigated
the combined technique of periodic task offloading with WPT from base station to end
devices in order to extend the battery life of these end nodes and enhance the
computation rate for decreasing job execution time.
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