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Mobile edge computing (MEC) pushes cloud resources including 

computation and storage in vicinity of end devices. This effectively 

reduces communication latency. However, the minimum battery 

power of end devices limits the MEC performance. Integration of 

Wireless power transfer (WPT) with MEC enhances the performance 

by charging the end devices simultaneously while computation 

offloading. The problem lies in the variation of network state and 

channels while this offloading, which reduces the overall 

computation rate. To this end, in this paper, we aim to maximize the 

computation rate of whole MEC network using deep learning. We 

use a Deep Neural Network which learns from multiple episodes and 

decides whether to offload the task or not based on network state. 

This binary decision leads to remote execution of the task in case of 

optimal network state, and if not optimal, then leads to local 

execution. The experiments and results validate the effectiveness of 

our proposed framework. 
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INTRODUCTION 

Smart devices and sensors can only store limited energy, so they need to be charged 

repeatedly, which isn't always possible. Thanks to computational offloading and WPT, 

smart gadgets can control how much energy they use. By moving computation to 

cloud servers, smart devices can use less energy. Efficient computational offloading in 

MEC [1, 2] is a powerful way to lower the latency limits that are usually associated with 

geo-distributed cloud computing. Cloud servers handle programs and parts of 

programs that require a lot of processing power. This lets smart devices do more while 

keeping their batteries alive. When deciding whether to offload work or do it locally, it 

is important to look at how much energy is used and how much it costs to run mobile 

devices [3]. On the other hand, sending computing tasks to cloud servers may slow 

down transmission [6, 4] and cause security and privacy problems [4, 5]. A MEC server 

is put close to end devices to get around latency limits and shorten the amount of time 

it takes for data to be sent [7, 8]. Edge computing optimizes and controls energy cloud 

systems in a smart way, which makes them safer and more reliable [9, 10]. On the other 

hand, the performance of smart devices for end users is still limited by how much 

energy they use and how quickly their batteries die. WPT has been proposed as a 
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feasible solution to the energy consumption and battery depletion issues. WPT charges 

neighboring devices without a cable power connection by utilizing techniques such as 

inductive coupling and MRC. WPT can also persuade intelligent devices to offload 

computation to neighboring edge servers. In a wireless context, researchers presented 

an approach for combining WPT with MEC computational offloading to MEC servers 

[11]. The WPT idea is depicted in Figure 1.1 [9], in which end devices get wireless power 

from a BS linked with a MEC server and are instructed to offload work to the edge 

server. Endpoints connected to the MEC server benefit from the WPT. This method may 

be used to charge smart devices from access points that support WPT (AP). 

Several studies have found that smart devices use less energy when they use MEC 

computational offloading [12, 13]. MEC offloading can help smart devices finish jobs 

faster, use less energy, and keep their batteries charged longer. In the same way, WPT 

helps smart devices for end users keep their functionality while extending their battery 

life [14]. [15] talked about how charging smart devices could give them a reason to 

send their computing tasks to a nearby MEC server. For these gadgets to work, they 

need electricity from BS. [16] Considered a multi-antenna access point (AP) that sends 

wireless power to smart devices and lets them use that power to send their work to the 

MEC server or run locally.  

We aim to maximize the computation rate of overall MEC system using deep learning 

approach. Further, We aim to increase the battery life of end devices that perform 

repetitive operations by combining an access point with a MEC server that broadcasts 

WPT to these end devices. We coordinate periodic tasks on the end device using deep 

learning approaches to boost computation performance and decrease task 

execution time. 

RELATED WORK 

To save energy, dual band simultaneous wireless information and power transmission 

(SWIPT) was created. It uses a base station (BS) and an edge server to send power to 

end devices [11]. In dual band mode, the properties of both the low frequency (LF) 

band and the high frequency (HF) band were studied. The LF band is used to send 

data over long distances and send energy over short distances. The HF frequency, on 

the other hand, is used to send data over short distances. In terms of channel resource 

allocation and energy harvesting, the suggested dual-band system was both efficient 

at energy harvesting and fair to all users. Wang et al. [15] showed a multiuser MEC 

system in which a BS is connected to a mobile edge server that gives wireless power 

to end mobile devices to encourage them to share tasks. The authors came up with 

Figure 1WPT-MEC Mechanism 
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an optimization problem that maximizes the usefulness of data while minimizing the 

amount of energy used by the operator.  The authors (16) made a TDMA-based access 

point with multiple antennas that charges end devices and uses the collected energy 

for each end device's local processing or job offloading at the MEC server (TDMA). 

Researchers worked together to improve CPU frequencies, time distribution between 

users, offloading bits at the end device, and energy beam-forming at the access point 

(AP). Article 22 describes a way to charge mobile devices that improves performance 

by using energy harvesting technology and low latency. This method cut the cost of 

execution by a lot, which was missed in earlier studies, but it made latency and energy 

use go up because the end device had to wait longer. System performance was 

made sure by taking into account the costs of running the system and using less 

energy. [23] talked about research on UAV systems that use binary and partial 

offloading modes. By making communication and processing resources for UAV-

enabled devices that run on wireless power, the rate of calculations was actually sped 

up. To get a high processing rate, the researcher used both partial and binary 

offloading. By assigning CPU cycles and frequencies together, the suggested study 

made users' experiences fairer. Also, these CPU cycles made it easier for more users to 

get to the top of the list.  

[24] looks into a cooperative MEC system that can be controlled by UAVs wirelessly. An 

energy transmitter (ET) and a MEC server are put on a UAV to power and process 

sensor equipment (SDs). The SDs who are good at their jobs want to use the UAV and 

the SDs who aren't doing anything nearby to code. Combining the CPU frequencies, 

transmission power, number of offloading, and flight path to lower the UAV's overall 

energy consumption leads to an optimization problem. A sequential convex 

approximation-based strategy is used to solve a problem that is not convex. Given how 

hard it is to do the math, a deconstruction and iteration-based method is also shown 

to be a good choice. [25] tries to get the UAV to send as many completed task input 

bits and their weighted sum to end devices as possible. These unmanned aerial 

vehicles (UAVs) get their power from the AP and then send it to the end devices 

wirelessly. This lets the end devices do their jobs or send their work to the MEC server. 

The authors suggested using a block-coordinated descending method to solve the 

non-convex weighted sum job input bits maximization problem in a continuous way.  

Using binary offloading mode, coupled optimization of mode selection (i.e., local 

execution or offloading), transmission time during WPT, and task offloading, [26] and 

[27] increased the rate at which wireless devices could do computations. Researchers 

looked into decoupled optimization and assumed that computing mode selection is 

already known. They then came up with a bi-section strategy for getting the best time 

allocation to solve the problem of transmission time allocation and multi-user mode 

selection being tied together. The authors of [28] used binary offloading and NOMA 

for offloading users to speed up computations in the WPT-MEC system. Researchers 

looked into the fact that the highest rate that can be reached with TDMA and NOMA 

is the same, but NOMA is better at making sure that all users get the same rate. Wang 

et al. [29] used a hybrid WPT-MEC system with TDMA for work offloading and multi-

antenna AP broadcast power to end devices to get the most out of the computation 

rate. The author made sure that energy beam-forming, task offloading, and time 

allocation were all done in the best way possible. 
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Proposed System Model  

We established a framework that covers all of the challenges described after doing a 

full literature research and determining the problem statement. The proposed solution 

provides the best response to the problem description and answers all questions 

adequately. We explained our proposed system and the methods we used to simulate 

it in this part. We first used the near field WPT technology to transmit energy from the 

AP to end devices. Second, we used Python- based tensor flow and machine learning 

methodologies, as well as other libraries. Following these simulations and code 

execution, we compare our findings to those of currently used approaches. Based on 

this comparison, we discovered that our proposed technique produces better results. 

After the detailed literature review and identification of problem statement we 

proposed our framework that answers all the question raised in the problem statement. 

Proposed solution effectively answers all the questions and provides optimal solution to 

the problem statement. Magnetic resonant coupling was used to simulate energy 

transfer from an AP (active circuit capable of broadcasting energy) to end devices 

using passive circuits in order to address the problem of battery depletion (inductor 

and capacitors to store energy). To experiment with network protocols, we employed 

the embedded WPT technique with the ns-3 simulator.  

The access point (AP) contained several transmission coils (TX) in our simulation, and 

each wireless device had a single receiving coil (RX). A test message is sent when the 

power of a device falls below a certain threshold. Energy is transmitted to the end WDs 

on the response, which store these watts at random intervals by moving the transmitter 

coils and matching the impedance between RX and TX. To meet the battery drainage 

issue, we chose magnetic resonant coupling for simulation of energy from AP (Active 

circuit that has the power of broadcasting energy) to end devices having passive 

circuit (inductor and capacitors to store energy). We used ns-3 simulator and 

embedded WPT approach with it to work with network protocols. In our simulation, we 

used number of transmitting (TX) coils at the AP, and a single receiving (RX) coil with 

each wireless device. Whenever, a device power becomes less than a threshold, it 

broadcast a test message. On the response, transmitter coils moves around and 

matches impedance between RX and TX, energy is transferred to end WDs in and 

these devices store these watts periodically at a random time interval. 

Wireless Power Transfer (WPT) is a technique that enables the wireless movement of 

electrical energy from one location to another without the need of wires or cables. The 

idea of "broadcasting" or "wireless power transmission," which refers to the technique 

of distributing electrical energy over a long distance using electromagnetic waves, is 

a major component of WPT. In WPT broadcasting, a power source, often a power 

amplifier or oscillator, is used to create an alternating current (AC) signal at a certain 

frequency. This alternating current signal is then sent through an antenna or transmitter 

coil, which turns the electrical energy into an electromagnetic field that radiates out 

into the surroundings. One or more receiving coils, normally positioned some distance 

distant from the transmitter, can receive the electromagnetic field created by the 

transmitter coil.  

These receiving coils are tuned to the same frequency as the transmitter coil, allowing 

them to take up the electromagnetic field and transform it back into electrical energy. 

WPT employs two forms of broadcasting: near-field and far-field broadcasting. 

Magnetic induction is used in near-field broadcasting to transmit energy across small 

distances. This technology is frequently employed in situations where the transmitter 

and receiver are near to each other, such as wireless charging of electrical gadgets. 
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The magnetic field generated by the transmitter coil is strong enough to induce a 

current in the receiving coil, allowing electrical energy to flow between the two coils. 

Far-field broadcasting, on the other hand, uses electromagnetic radiation to convey 

energy across greater distances. This approach is frequently used in situations where 

the transmitter and receiver are many meters distant, such as wireless power delivery 

for electric cars. The electromagnetic field generated by the transmitter coil radiates 

in all directions, and the receiving coil must be built to capture as much of this energy 

as feasible. One of the most difficult aspects of WPT broadcasting is ensuring that the 

transmitted energy is efficiently received by the receiving coils. This necessitates careful 

design of both the transmitter and receiver coils, as well as the employment of 

sophisticated control systems to guarantee that the broadcast signal's frequency and 

amplitude are adjusted for maximum power transmission. Notwithstanding these 

obstacles, broadcasting remains an important component of WPT and a necessary 

technology for the development of new applications such as wireless charging, 

electric cars, and renewable energy. As research in this subject continues, we may 

expect to see additional breakthroughs in the design and execution of WPT 

broadcasting systems, leading to more efficient and effective means of wirelessly 

delivering electrical energy over larger distances. 

Coordination of periodic tasks 

The techniques for conducting and coordinating recurrent tasks on wireless devices 

are as follows. 

Local Computation (Without Coordination) 

Deep Learning Coordination (MB) 

Algorithmic Coordination (DLPTO) 

Local Computation (No Coordination) 

Each WD in local computing completes its duty at a rate of 105 bits per second. 

Periodic tasks are not synchronized in this situation, and wireless channels that change 

over time are ignored. In local computation each WD computes its task locally with a 

computation rate of 105 bits/s. In this case there is no coordination of periodic task and 

time varying wireless channels are ignored. Local computing is a computational 

paradigm that focuses on distributed and decentralized data processing. 

Computations are done on local data in this paradigm, where local refers to a portion 

of data stored on a single computer or node in a distributed system. Since calculations 

are conducted on data that is instantly accessible, rather than waiting for all data to 

be aggregated in a single place, local computing provides for efficient processing of 

big datasets while minimizing communication overhead. 

Local computing is particularly beneficial when the data is too vast to be stored and 

processed centrally. In such instances, local computing allows data to be processed 

on dispersed nodes, with each node processing a piece of the data stored locally. 

Because the work is split among numerous nodes and the results are pooled 

afterwards, this strategy can yield in a considerable decrease in overall processing 

time. One of the primary benefits of local computation is its capacity to handle data 

in a distributed and decentralized fashion. This allows for parallel processing since 

numerous nodes may conduct computations concurrently, boosting total processing 

speed. Furthermore, because just the relevant data is transferred rather than the 

complete dataset, local computing can decrease the quantity of data that must be 

transmitted between nodes.  
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This has the potential to minimize communication overhead, which is a major 

bottleneck in many distributed systems. Several practical uses of local computation 

exist, including data analysis, machine learning, and optimization. For example, in 

machine learning, local computing is used to train models on distributed data, where 

each node analyses a piece of the data and changes the model parameters locally. 

The model is thus trained in a distributed and parallel fashion, which can greatly reduce 

total training time. To summarize, local computing is a strong computational paradigm 

that permits distributed and decentralized processing of big datasets. Local 

computing has several practical applications in machine learning, data analysis, and 

optimization, and it is a necessary tool for data processing in distributed systems. 

Problem Formulation 

We proposed a deep learning based algorithm (DLPTO) that is based on deep neural 

network (DNN) approach. As we have considered time varying channels, our model 

takes input channel gain at each tagged time frame, selects the best action among 

multiple offloading actions and updates the DNN memory with best offloading actions. 

In more detail, DLPTO consist of two phases. In first phase data samples are collected 

including channel gain and DNN first outputs a normal offloading actions in which one 

devices executes task locally and other one offloads. For this purpose, each device is 

assigned a weight below 0.5 or above 0.5. A deep learning algorithm (DLPTO) based 

on a deep neural network (DNN) technique was developed. Because time-varying 

channels were considered, our model takes the input channel gain for each tagged 

time frame, chooses the best offloading action from a set of options, and updates the 

DNN memory with the best offloading options. 

Deep Learning Periodic Task Offloading (DLPTO) is a strategy for increasing deep 

learning task performance and energy efficiency on mobile and embedded devices. 

DLPTO entails offloading compute-intensive processes to remote servers or cloud-

based platforms while retaining local control over task execution on mobile and 

embedded devices. Speech recognition, natural language processing, and picture 

recognition are examples of tasks where DLPTO can be extremely effective. Mobile 

and embedded devices can save resources by outsourcing certain activities to more 

capable servers while still benefiting from the accuracy and speed of deep learning 

algorithms. DLPTO operates by a mix of prediction and preemption.  

Initially, the DLPTO system predicts the future execution of a periodic job using machine 

learning methods. The job is then offloaded to a remote server before it is scheduled 

to run. This permits the distant server to finish the work, relieving the local device's 

resources. After the distant server finishes the job, the result is returned to the local 

device for further processing. DLPTO has the potential to greatly increase deep 

learning task performance and energy economy on mobile and embedded systems. 

Nevertheless, a stable network connection and a high level of coordination between 

the local device and the distant server are required. DLPTO is a thriving research field, 

with continuing efforts to build more efficient and effective offloading mechanisms for 

deep learning applications. 

The DLPTO is split into two stages. DNN takes data samples, including channel gain, in 

the first phase, and then provides a typical offloading action in which one device 

performs the operation locally and another offloads. As a result, each gadget has a 

weight greater than or equal to 0.5. The technique for creating a common offloading 

action is as follows. 

a1,i = 
0 at,i < 0.5 

1 at,i >= 0.5 
0 
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Where i= 1, 2, 3…… N, and ‘a’ denotes the offloading action. Binary value 1 suggests 

offloading, while binary value 0 indicates local execution. After generating a normal 

offloading action, it is quantized into K binary offloading actions, where K = 2N. 

Computation rates for each action are then determined based on the channel state, 

and the best one with the highest computation rate is picked. In the second phase, 

the best offloading actions update DNN's memory. To conform to the memory 

restriction, older best actions are replaced with new ones. DNN uses the optimum 

offloading action to achieve maximum processing speed and maintain its memory 

updated during these periods. The DLPTO pseudopod is depicted below. To meet the 

memory constraint, new best actions are replaced with older ones. Through these 

phases DNN keeps it memory updated with best offloading action and achieves 

maximum computation rate. Following is the pseudopod of DLPTO. 

DLPTO Algorithm 

Provides optimal offloading action between local and remote Computation 

Input: Channel Gain ht at each time frame T 

Output: Best Offloading Action at the Tth time frame with   optimal resource allocation 

Initializing DNN parameters (Random) and with empty memory 

Set the Iteration number N 3. For t=1,2,3… N do 

Generate Number of Normal Offloading Action an 

Evaluate Computation rates C for all actions ( ht, at) 

Select the best action at = max (ht, at) 

Return (ht, at) to memory for updating 

Train the DNN with (ht, at) and update Log loss l 

End 

Our model has one layer that goes in, two layers that stay hidden, and one layer that 

goes out. There are 80 and 20 neurons in each of the hidden layers. We used the ReLU 

activation function for the first hidden layer. For the second hidden layer, we used tanh, 

and for the output layer, we used sigmoid. But the system can be easily made bigger 

by adding more neurons to help train better. We used the Keras and Tensorflow tools 

to train our DNN model. Our model is made up of one input layer, two hidden layers, 

and one output layer. There are 80 and 20, respectively, neurons in each hidden layer. 

The ReLU activation function was used for the first hidden layer. The Tanh activation 

function was used for the second hidden layer, and the sigmoid activation function 

was used for the output layer. Just add more neurons to the system to make training 

go faster. We used preprocessed CD technique data to synchronize periodic actions 

[26]. 30,000 samples are included in the preprocessed data. Each data sample 

contains Wireless channel gain, Computing mode, Transmit time of wireless device and 

Sum of computation rates 

 

Figure 2Proposed system model 
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RESULTS AND DISCUSSION 

We examined our findings and evaluated our system in this chapter. We demonstrated 

the effectiveness of our suggested method using simulated logs. We also included 

graphics to compare our suggested system against alternative options. 

Experimental Setup 

We used the open-source ns-3 simulator to simulate network protocols. In order to allow 

numerous offloading mechanisms, we integrated WPT simulation with ns-3. In order to 

assess performance, we estimated the WDs' power consumption per hour. This 

consumption ranges from 5 mW to 150 mW depending on the design of the final WDs. 

Tensor-Flow was used in conjunction with the Python programming language to 

simulate, code, and evaluate computation rate and training log loss performance. We 

used ns-3 simulator which is an open source tool for the simulations of network 

protocols. We embedded WPT simulation with ns-3 to work with different offloading 

protocols. To measure the performance we estimated the power consumption of WDs 

in watts/hour. Normally, this consumption relies between 5 mw-150 mw depend upon 

the architecture of end WDs.  

On the other side, we used python language with tensor-flow for simulation, coding 

and performance measurement of computation rate and training log loss. In order to 

allow numerous offloading mechanisms, we integrated WPT simulation with ns-3. In 

order to assess performance, we estimated the WDs' power consumption per hour. This 

consumption ranges from 5 mW to 150 mW depending on the design of the final WDs. 

Tensor- Flow was used in conjunction with the Python programming language to 

simulate, code, and evaluate computation rate and training log loss performance. We 

evaluated the performance of our DLPTO algorithm to that of numerous deep learning 

benchmarking systems. We compared the performance of our DLPTO algorithm by 

using deep learning technique with other benchmarks schemes. We evaluated the 

performance of our DLPTO algorithm to that of numerous deep learning benchmarking 

systems. 

Performance Evaluation Parameters 

We divide this section into following three subsections to categorize our performance 

evaluation setup. 

• Battery Performance 

• Computation Rate Performance 

• DNN Performance 

• Battery Performance 

We use WPT to efficiently tackle the WDs' battery draining issue. We investigated and 

showed the power consumption of two WDs with and without WPT. Figure 6 shows a 

comparison of WD battery power and WPT efficacy across different time periods. We 

compared the battery power of two WDs in the following graph by reporting the power 

consumption in watts/hour. The graph indicates that WDs without WPT may run out of 

battery power during computation if they do not receive wireless power from the AP. 

WPT, on the other hand, ensures that WDs are constantly charged so that they can 

perform their duties without interruption. We plotted the power consumption of two 
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WDs with and without WPT. Following Figure 6 shows the comparison between battery 

power of WDs and effectiveness of WPT in different time durations. In the following 

figure, we compared the battery power of two WDs in which we plotted the power 

consumed in watts/hour. Graph shows that without WPT, a WD can be dead after a 

time span depending upon battery power of this WD during computation if these 

devices do not receive wireless power from the AP. However, WPT ensures the 

continuous charging of WDs so that these devices could process their task without any 

power interruption.  

We've also included the simulation and data log in the diagram below. This graph 

depicts the constant, uniform, and adequate charging of WDs. Figure 6 shows the 

comparison between battery power of WDs and effectiveness of WPT in different time 

durations. In the following figure, we compared the battery power of two WDs in which 

we plotted the power consumed in watts/hour. Graph shows that without WPT, a WD 

can be dead after a time span depending upon battery power of this WD during 

computation if these devices do not receive wireless power from the AP. However, WPT 

ensures the continuous charging of WDs so that these devices could process their task 

without any power interruption. 

Computation Rate Performance 

To enhance the computation rate per channel, DNN is used. The suggested Python-

coded and Tensor-flow-imported approach (DLPTO) takes the channel gain at each 

time frame as input and uses experience to train a DNN. The DLPTO generates 

offloading actions for each input while concurrently updating the DNN memory and 

chooses the best one to offload. Using this training method, DLPTO effectively 

enhances the calculation rate for each input. Our proposed system (DLPTO) is coded 

in python and imported tensor-flow that takes channel gain at each time frame as 

input and trains DNN through experience. For every input, DLPTO generates offloading 

actions and selects the best one for offloading and also updates the DNN memory 

with this action. Through this training approach, DLPTO effective increases the 

computation rate for each input. Following Figure shows the performance gain with 

DLPTO. Figure 2 demonstrates the improved performance brought about by DLPTO.  

 
Figure 3Average Computation Rate 
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A blue graph represents the moving average of calculation rate as the number of time 

frames increases. 

The simulation produces a per-channel average calculation rate of 0.98, which is close 

to real-time response. 

Keep in mind that we evaluated 1000 time intervals; if the time intervals are changed, 

the computation rate will change accordingly. 

The maximal calculation rate (bits/s) of DLPTO coordination was compared to that of 

the MB method and local computing. The MB method efficiently maximizes the 

computation rate with a high number of devices. However, DLPTO performs best when 

there are between 10 and 30 devices. We compared the maximum computation rate 

(bits/s) achieved by DLPTO coordination with MB algorithm and local computing. MB 

algorithm effectively maximizes the computation rate with a large number of devices. 

However, when devices are in between10-30, DLPTO achieves best performance. 

Figure 9 shows the effectiveness of our algorithm compared to MB and local 

computing. Figure 9 compares our algorithm's performance to that of MB and local 

computing. 

 

Figure 5Maximum Computation Rate 

 

 

Figure 4Effectiveness of WPT 

Figure 6Impact of time frames Computation Rate 
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The amount of time frames impacts the DLPTO's computation speed. Because this 

method learns from experience, increasing the number of time frames boosts 

calculation performance while reducing log loss. Figure 10 demonstrates the effects of 

time frames, with the first bar reflecting an increase in calculation rate as the number 

of frames increases and the second bar representing a decrease in calculation rate 

as the number of frames decreases. Number of time frames affects the computation 

rate of the DLPTO. As this algorithm learns from experience, increasing the number of 

time frames improves the computation rate with minimizing log loss and vice versa. 

Figure 10 shows the impact of time frames where first bar denotes the improvement of 

computation rate with maximum number of time frames and second bar denotes the 

computation rate affected by less number of frames. Last bar denotes the 

computation rate influenced by minimum number of frames. The last bar reflects the 

computation rate as influenced by the fewest amount of frames. 

 

Figure 8Impact of Time Frames on Log Loss 

DNN Performance 

As the suggested system learns via experience, we estimated the cross entropy loss for 

our DNN model. This loss is also known as the training or log loss. Cross entropy is a type 

of loss function in which the loss is determined by how far each predicted value 

probability deviates from the intended output value, which can be 0 or 1. Over time, 

our model learns new skills and develops its own training schedule. Since the proposed 

system learns from experience, we calculated the log or training loss, also called cross 

entropy loss, for our DNN model. Cross entropy is the loss function where each 

predicted value probability is compared to the actual value desired output 0 or 1, and 

loss is calculated based on how far away it is from the actual value. Our model slowly 

learns and gets better as it uses itself. The log loss for our proposed model is shown in 

the next figure. The graph below depicts the log loss for our suggested model. We 

provided a log loss comparison in proportion to the amount of time frames in our DNN 

Figure 7Log Los 
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model. Due to DNN's limited or maximum experience gain, the number of time frames 

has a significant impact on this training loss. Because of the large number of time 

frames, the first bar in Figure 12 shows a rapid decrease in log loss, which becomes 

practically constant at 0.1. We plotted the comparison of log loss depending upon the 

number of time frames in our DNN model. Number of time frames highly influences this 

training loss because of minimum or maximum experience gin by DNN. In Figure 12, first 

bar denotes quickly decrease of log loss and becomes almost stable at a certain point 

0.1 due to large number of time frames. However, second and third bar presents the 

gradual increase in log loss and also unstable due to minimum number of time frames. 

However, because to the limited number of time frames, the second and third bars 

show a continuous increase in log loss and are similarly unstable. 

The duration of DNN processing is influenced by time frames. The smallest number of 

time frames has little influence on processing performance but has a significant effect 

on time consumption. A large number of time frames improves calculation 

performance but dramatically increases the time necessary to finish the task as DNN 

learns from deeper layers and experience. The graph below shows how time frames 

affect the overall amount of time DNN takes. Time frames also impacts the time 

consumption for DNN processing. Minimum number of time frames slightly impacts the 

computation rate, however greatly influences the time consumption. Large number of 

time frames in improves the computation rate as DNN learns from inner layers and 

experience, however consumes much more time to complete. Following graph shows 

the impact of time frames on total time consumption of DNN. 

 

Figure 10Impact of number of neurons on computation rate 

 

In order to evaluate DNN's performance, we compared its essential parameters. We 

used 120 and 80 neurons in the DNN's two hidden layers, respectively. Because our 

DNN model is totally coupled, the number of neurons has a significant impact on the 

time of the learning operation. Figure 14a shows how having more neurons has minimal 

effect on calculation speed, which may be ignored. Figure 14-b shows that using fewer 

Figure 9Impact of Time Frames on time consumption 
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neurons speeds up the execution of a DNN. To measure the performance of DNN, we 

also compared the inner parameters of DNN. We have used 120 and 80 neurons in two 

hidden layers of DNN respectively. As our DNN model is fully connected, more number 

of neurons slightly improves the computation rate, however it greatly influences the 

time consumption in learning process. Figure 14-a shows the impact of more number 

of neurons on computation rate which is minor, hence can be ignored. However, figure 

14-b shows that using fewer number of neurons reduces the time consumption of 

running DNN. 

 

Figure 11Impact of number of neurons on time consumption 

CONCLUSION 

The ability to charge smart devices through Wireless power transfer (WPT) from a base 

station in combination with a Mobile Edge Computing (MEC) server broadens MEC's 

use. Furthermore, this thesis provided a thorough examination of intelligent online 

compute offloading in mobile edge networks. The research addressed the difficulties 

in effectively managing computation offloading in mobile edge networks and 

suggested a unique intelligent framework for efficient computation offloading. To 

optimize the decision-making process for computing offloading, the framework 

employs machine learning techniques. The experimental findings suggest that the 

proposed framework is successful at optimizing computation offloading and 

enhancing mobile edge network performance. The framework can adapt to 

changing network circumstances and workload demands, guaranteeing effective 

resource use and enhanced QoS for end users. This thesis' contributions go beyond the 

creation of the intelligent framework.  

The paper also contributes to the larger field of mobile edge computing research by 

offering a better understanding of the compute offloading process in mobile edge 

networks. The suggested framework may be used in a variety of application situations, 

including real-time data processing and Internet of Things (IoT) applications. In 

conclusion, this thesis shows the promise of intelligent compute offloading in mobile 

edge networks and lays the groundwork for future study in this field. The proposed 

architecture provides an effective solution to the issues associated with compute 

offloading in mobile edge networks, and it has the potential to greatly increase 

network performance and efficiency.  

The increasing popularity and energy and power consumption of smart devices has 

increased the need for MEC. Nonetheless, the demand for recurring end-device tasks 

such as traffic monitoring and surveillance is growing, necessitating longer battery life 

and more computational power from these devices. End devices, such as sensors, 

require more energy during periodic offloading than during non-periodic activities. In 
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order to enhance the energy restrictions of end devices, these periodic efforts must be 

coordinated via joint WPT. By coordinating periodic task offloading, we investigated 

the combined technique of periodic task offloading with WPT from base station to end 

devices in order to extend the battery life of these end nodes and enhance the 

computation rate for decreasing job execution time. 
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