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segmentation, feature extraction, and classification. All of them join
together to solve different problems and understand the changes
in images. They are useful in many ways, like in medicine, security,
photography, and robotics. Where images need to be studied or
improved. Drawing on visual information, these methods help us in
comprehending images, extracting key data, and making informed
choices. There are two main ways to process the image, which are
through traditional image-processing methods and deep-learning
models. Usually, traditional techniques depend on manually
designed algorithms and rules. Which uses fixed steps to process
images. In contrast, deep learning models learn features directly
from the information itself, enabling them to automatically detect
distant details that traditional techniques could miss. The things that
help the image processing methods to proceed are like Self2Self NN,
Denoising DFT-Net CNNs, and MPR-CNN, which help remove
unwanted noise from images in denoising. However, they sfill face
difficulties with data preparation and adjusting model settings.
While in an image enhancement, R2R and LE-net are employed to
enhance the image'’s visual quality, through which they can deal
with complex real-world images and help them to look natural. On
one hand, in the segmentation, PSP Net and Mask-RCNN methods
accurately separate objects in an image; however, they can face
problems with overlapping objects and ensuring reliable
performance. In the method of feature extraction, models like CNN
and HLF-DIP can automatically detect important image details,
though they can be hard to interpret and sometimes complex to
use. In the classification method, Residual Networks and CNN-LSTM
are the approaches, which are effective at accurately identifying
image categories; however, they require enormous computing
power and can be difficult to fully understand. This review gives a
clear overview of the advantages and disadvantages of different
methods, which can help people choose the best approach for
real-world use. As image processing confinues to develop, solving
problems like high computing needs and ensuring reliable
performance will be important to make these techniques work at
their best.
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INTRODUCTION

Image processing is a vast field that employs different methods to get useful
information from an image. At a similar point, Artificial Inteligence (A_l) has become
alarge area of study that focuses on making machines that think and act like humans.
Machine Learning (M_L) is a small part of A_l. This one can allow a computer to learn
from data and make decisions on its own without taking help from humans. M_L
reduces the need for humans to make decisions. At the core of M_L, deep learning
(D_L) is a branch that goes beyond traditional methods, especially when working with
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unstructured data such as images, text, or audio. Even a D_L can achieve an
accuracy of such a level that humans cannot. Its success depends upon that it has
a greater quantity of data to train a complex neural network, which is made up of
many layers. Unlike older models, D_L systems can automatically identify and extract
crucial perspectives from information without needing humans to manually define
them. Such a type of ability also comes from its layered structure. D_L is inspired by the
process of coping, that how the human brain can think and learn. It aims to develop
learning algorithms that closely replicate the brain’s complex processes. In this paper,
different deep learning methods proposed by various researchers are explained and
discussed in relation to their use in Image Processing (IP) techniques.

Such a detailed collection explores the huge and complex field of IP. These are image
restoration, feature extraction, segmentation, enhancement, and classification. All of
them are important in handling and improving visual data, which helps us to
understand the image better and use images in many different applications. The most
important step in it is image restoration methods, which help in fixing damaged or
unclear images. The techniques, like removing noise, correcting blurriness, and filling
in missing parts, aim to undo the effects of distortion and other image problems. They
create a solid base for further analysis and interpretation by improving the image’s
clarity and accuracy, which is important in areas like medical imaging, security, etc.
The orbit is used forimage enhancement, which can improve the quality of an image.
This task can be processed to adjust contrast, brightness, sharpness, etc. This can
make the image easier to see and understand. Image enhancement is used in many
different fields, which can lead to better analysis and more accurate decision-
making.

This study includes image segmentation, in which images are divided info many parts.
Methods like clustering and semantic segmentation help to identify the objects within
the image. Image segmentation is especially crucial for the detection of objects,
tracking, and understanding scenes, which can provide the foundation for accurate
recognition and analysis. The most essential part of an image analysis is extraction,
which can improve the characteristics of the image for further study. Traditional
methods face the frouble, while in deep learning, it can automatically identify the
complex features. This ability improved the image and helps with better analyses.
Image classification is also an important task in visual data analysis. In which we give
images labels based on what they show. Most of the time, this is used for the
recognition of objects and medical diagnosis. Both M_L and D_L methods are used to
automatically and accurately sort images into categories and helping to make
decisions more quickly and effectively.

Section 1 explains the basic ideas and operations of image processing. Section 2 gives
a detailed overview of the assessment methods employed to gauge the performance
of distinct image processing techniques. Section 3 explores various Deep Learning
(D_L) techniques that are particularly designed for the tasks of image preprocessing.
Section 4 focuses on D_L models employed for the segmentation of images,
explaining their methods and applications. In Section 5, the paper discusses D_L
techniques for feature extraction, highlighting theirimportance and efficacy. Section
6 examines D_L models used for image classification, describing their structure and
performance. Section 7 discusses the importance of each model, and Section 8
concludes the paper by summarizing the key outcomes and main insights from the
study. The research reviewed in this paper covers a wide range of D_L techniques
applied to different areas, including medical images, satellite images, images of fruit
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and plant (flower), and even image analysis in real-time. Each area has its own
challenges, which are addressed with specific D_L methods, showing how flexible and
powerful deep learning can be across many real-world applications.

Image processing operations metrics

Metrics of evaluation play a critical role in measuring the effectiveness and
performance of various image-processing techniques. They provide quantitative
indicators that enable researchers and practitioners to conduct objective analyses
and make meaningful comparisons across different approaches. Through the
application of these parameters, the often complex and subjective nature of image
processing becomes highly transparent and data-driven, supporting informed
decision-making and fostering continuous progress in the field.

Table A summarizes commonly used metrics for evaluating image preprocessing,
segmentation, and classification tasks. The evaluation of image processing,
segmentation, and classification tasks relies on a variety of quantitative metrics
designed to assess performance across different dimensions of accuracy, similarity,
and perceptual quality. In image preprocessing, metrics such as Average Squared
Deviation (ASD) and Average Absolute Deviation (AAD) measure the discrepancy
between the original-images and processed-images. ASD calculates the mean
squared difference between the original-images and denoised-images, penalizing
larger errors more heavily, whereas AAD (equivalent to Mean Absolute Error) assesses
the average tendency of errors without considering their path, providing a
complementary perspective on image restoration accuracy. Maximum Signal-to-
Noise Ratio (MSNR) quantifies restoration quality by comparing the optimal
approximate pixel value to the measured noise, offering insight into the overall signal
fidelity. To capture perceptual and structural fidelity, the Structural Similarity Measure
(SSM) evaluates images based on luminance, contrast, and structural consistency,
while the Average Structural Similarity Index (ASSI) extends this evaluation across
multiple image patches to provide an aggregate assessment. Additionally,
perceptual quality is further assessed using Image Naturalness Index (NIQE), which
measures deviations in luminance and confrast statistics relative to natural images,
and Inception Feature Divergence (FID), which quantifies the distributional distance
between real and generated images using feature embeddings from pretrained
networks.

In image segmentation, metrics focus on evaluating the spatial accuracy of
predicted regions relative to ground truth annotations. Overlap Ratio Metric (ORM),
also refer as Intersection over Union, assesses the percentage of correctly predicted
pixels relative to the union of predicted and true regions. Mean Precision Score (AP)
measures detection performance across multiple recall levels through the calculation
of the area under the curve of precision-recall. Complementing these, the Dice
Overlap Index (DSC) evaluates the similarity between predicted and ground truth
masks, particularly useful in applications with class imbalance such as medical image
segmentation. Mean Accuracy (AA) calculates the correctly classified pixels’ ratio
(both negative and positive) across all images, providing a general measure of
segmentation performance.

For feature extraction and classification tasks, traditional metrics, i.e., Precision,
Accuracy, Recall (Sensitivity), and F-Measure (F1-Score) are widely applied. Accuracy
refers to the overall ratio of correctly predicted instances, though it may be less
informative in imbalanced-datasets. Precision measures the capability of the method
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to eliminate false positives, while Recall captures the model’s ability to correctly
identify true positives. F-Measure combines both Recall and Precision employing the
mean of harmonic to present a balanced evaluation of model performance.
Specificity (True Negative Rate) corroborates these metrics by quantifying the ratio of
correctly identified negatives. Finally, the ROC Curves and their corresponding Area
Under the Curve (AUC) visually and quantitatively represent the mutual exclusivity
among true-positive and false-positive rates, offering a detailed measure of classifier
performance across varying decision thresholds.

Collectively, these parameters provide a rigorous mechanism for assessing the
effectiveness of image processing, segmentation, and classification models,
balancing considerations of structural fidelity, perceptual quality, and predictive
accuracy.

Image pre-processing

The image pre-processing represents a primary stage in the image processing field,
comprising a sequence of operations designed to prepare raw/unprocessed images
for subsequent processing, including analysis, interpretation, and manipulation. Such
a crucial phase enhances the images’ overall quality by reducing noise, correcting
distortions, and emphasizing related features. Through these improvements, image
preprocessing contributes to highly reliable and accurate outcomes in advanced
tasks, i.e., image recognition, classification, and analysis.

In general, image-pre-processing models can be classified into two primary types:
image restoration. These types fundamentally focus on eliminating noise and blurring
to recover the original image quality, and image enhancement, which aims to
improve visual attributes such as contrast, brightness, and detail to facilitate better
interpretation and analysis.

Image restoration

The image restoration is a critical process dedicated to recovering the images’
original integrity and visual quality that have suffered distortion/degradation. The
fundamental objective of it is to reconstruct an image that is in degraded form into a
clearer and highly faithful representation, ultimately unveiling information that could
have been lost or obscured. The process of image restoration is primarily significant in
situations where the quality of the image is compromised because of the factors, i.e.,
sensor imperfections during image acquisition, compression artifacts, or transmission
errors. By addressing these degradations, image restoration improves both the
interpretability and practical utility of visual information in various analytical and
diagnostic applications.

One of the major challenges in achieving high-quality images is the presence of noise,
an undesirable random variation in the intensity of a pixel that infroduces visual
arfifacts and could obscure critical image information. In addition, noise of distinct
types can influence the quality of an image, including Gaussian noise, known by its
random statistical distribution; salt-and-pepper noise, which manifests as sporadic
bright and dark pixels; and speckle noise, typically arising from interference patterns.
Such distortions commonly originate during the image acquisition phase or because
of subsequent processing and transmission operations. Effectively mitigating noise is
therefore essential to preserve image fidelity and ensure the accuracy of subsequent
analytical tasks.
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Table A: Summary of Common Metrics for Image Preprocessing, Segmentation, and Classification
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Category Metric Formula / Expression Description
Image Average 1 K H Measures the average squared difference between the
Preprocessing Squared ASD = T Z(Xi“,]- —X;j)? original X and denoised images X"; penalizes large errors
Metrics Deviation (ASD) 1=1j=1 more heavily.
Maximum I . . .
P.;
SorotoNose MR = 10+ lg(  Sueniesimoge esaolon auoll by comoarng e
Ratio (MSNR) noise P P '
g:mfc::’rr?l SSMo - = [ 2y, T 01 ] i [ 2¢0xy + G Evaluates similarity between original and denoised images
(xy) — 2 2 2 2 ;
Measure (SSM) (U +uy +CD| Nox+ o5 +C; based on luminance, contrast, and structure.
Average
Structural ASSI (x,y) = 1/1V [ASSI(xy,y1) + -+ ... Averages ASSI across image patches to measure overall
Similarity Index + ASSI(xn, ya)] structural similarity.
(ASSI)
The Mean Absolute Error measures the average magnitude of
Average AAD _ errors between actual and predicted values, without
Absolute |ygetual _ ypredicted| 4. 4 |ygetual —y, considering their direction. Lower AAD indicates better
Deviation (AAD) = n accuracy, and unlike ASD, it does not heavily penalize larger
errors.
Image . _— .
Assesses image naturalness based on deviation of luminance
Naturalness - -
and contrast statistics from natural images.
Index
Inception Measures distributional distance between real and
Feature generated images using feature embeddings from a pre-
Divergence frained network.
Image ORM

Segmentation
Metrics

Overlap Ratio
Metric

Mean Precision
Score

Dice Overlap
Index

true positive

" true positive + false positive + false negative

Dice =

2TP

2TP+FP+FN
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Evaluates overlap between predicted and ground fruth
regions; widely used in object detection and segmentation.

Calculates the area under the precision-recall curve across
multiple recall levels to assess detection performance.

The Dice Coefficient measures the overlap between
predicted and ground truth masks. Dice = 1 — perfect match
Dice = 0 — no overlap. It is widely used in medical image
segmentation, computer vision, and object detection,
especially when class imbalance exists.
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Category Metric Formula / Expression
Mean A : TP+ TN
Accuracy (AA) COUracy =Tp I TN + FP + FN

Feature Extraction
and Classification  Accuracy
Metrics

| ~ TP+ TN
CouracY =Tp Y TN + FP + FN

Correct Positive Predictions

Precision Precision = — —
All positive predictions

Recall TP
Recall (Sensitivity) =

(Sensitivity) TP +FN

F-M
F-Measure 5 Correct Positive Predictions

= *

All predictions positive + All Actual positive
ifici Correct Negative Predictions

Specm.cﬁry (True Specificity = g '
Negative Rate) All Actual Negative
ROC Curve /
AUC

Description

Overall Accuracy (AA) measures the proportion of correctly
classified pixels (both positive and negative) across all images
or regions.

AA =1 (100%) — all pixels correctly classified

AA =0 — all pixels misclassified

It is commonly used in image segmentation, classification, and
remote sensing tasks.

Accuracy measures the proportion of correctly predicted
instances out of all predictions. Accuracy =1 (100%) — all
predictions are correct. Accuracy = 0 — all predictions are
incorrect is widely used in classification, segmentation, and
prediction tasks, though it may be misleading for imbalanced
datasets.

Measures the model’s ability to avoid false positives.

Measures the model’s ability to correctly identify positive
samples.

Harmonic mean of precision and recall; balances false
positives and false negatives.

Proportion of correctly identified negatives among all actual
negatives.

Graphically represents trade-off between frue positive and
false positive rates; AUC quantifies overall performance.

Notice: TP (True Positive) = correctly predicted pixels, FP (False Positive) = wrongly predicted pixels, FN (False Negative) = missed pixels
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Historically, traditional image restoration has employed a wide range of techniques
to reduce the adverse influences of image degradation and noise. These include
constrained least squares filters, blind deconvolution models designed to reverse
blurring impacts, and Wiener and inverse filters that enhance the signal-to-noise ratio.
Furthermore, alpha-frimmed mean, order statistic, and adaptive mean filters adapt
their strategies of filtering based on local pixel intensity distributions to achieve more
context-sensitive restoration. In addition, deblurring algorithms are utilized to
counteract motion- or opftics-induced blurriness, thereby restoring image sharpness
and definition. Denoising methods (Peng et al., 2020; Tian et al., 2020; Tian et al.,
2019)—Non-Local Means and Total Variation Denoising, further enhance image
quality by efficiently suppressing random noise while preserving key structural
information. In sum, these traditional approaches have significantly advanced the
field’s ability to restore the integrity and visual clarity of the image. Table 1 provides a
comparative analysis of contemporary D_L techniques for restoration of image,
highlighting their key positive aspects and limitations.

The progress in D_L in recent years, specifically with the emergence of Convolutional
Neural Networks (CNNs) has transformed the landscape of image restoration. CNNs
possess a remarkable ability to learn and extract intricate key aspects from images,
enabling them to identify subtle patterns and relationships that are often difficult for
traditional algorithms to capture. By leveraging large-scale training datasets, these
models can produce substantially improved restoration outcomes, frequently
outperforming conventional approaches. This advancement stems from CNNs’
inherent capacity to model the underlying frameworks of images and to
autonomously infer the most effective strategies of restoration.

Tian et al. (2020) presented a comprehensive review of the application of deep neural
networks in image denoising, particularly focusing on the removal of Gaussian noise.
Their study examined a range of D_L techniques addressing different denoising
challenges—additive white noise, blind denoising, and images of real-world noise. By
conducting analyses on benchmark datasets, they evaluated the performance,
computational efficiency, and visual quality of different network architectures, and
provided cross-comparisons among various denoising methods across multiple noise
types. The authors concluded by highlighting the key challenges and limitations that
D_L approaches still face in achieving optimal image denoising. Similarly, Quan et al.
(2020) proposed a self-supervised D_L framework known as Self2Self for denoising of
images. Their research revealed that neural networks trained under the Self2Self
paradigm achieved superior results compared to both fraditional single-image
learning-based and non-learning-based denoising methods, demonstrating the
effectiveness of self-supervision in enhancing denoising performance without
requiring clean reference images.

Yan et al. (2020) introduced an innovative model for mitigating speckle noise in digital
holographic speckle pattern interferometry (DHSPI) wrapped phase images. Such a
technique utilizes enhanced Denoising Convolutional Neural Networks (DNCNNs) to
effectively suppress noise, with performance evaluated through Mean Squared Error
(MSE) comparisons across noisy and denoised information, demonstrating significant
improvements in image clarity and precision. Sori et al. (2020) developed a two-path
Convolutional Neural Network (CNN) framework for lung cancer detection using
denoised Computed Tomography (CT) images. The denoised images, processed
through DR-Net, were used as inputs for classification, yielding superior performance
in terms of sensitivity, accuracy, and specificity compared to contemporary models.
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Similarly, Pang et al. (2021) proposed an unsupervised D_L strategy for denoising of an
image based on unmatched noisy image pairs. By employing, a loss function
analogous to supervised learning, their technique, built upon the Additive White
Gaussian Noise (AWGN) framework, achieved competitive results when compared
with other state-of-the-art unsupervised denoising models.

Previous literature, Hasti and Shin (2022) documents a D_L-based denoising model for
fuel spray images captured through Mie scattering and droplet center detection.
Their comparative analysis among multiple architectures, including a standard CNN,
a modified ResNet, and a modified U-Net, show that the modified U-Net achieved the
best performance, as evidenced by lower Mean Squared Error (MSE) and higher Peak
Signal-to-Noise Ratio (PSNR) values. Niresi and Chi (2022) proposed an unsupervised
hyperspectral image (HSI) denoising algorithm grounded in the Deep Image Prior
(DIP) framework. Their approach minimized the Half-Quadratic Lagrange Function
(HLF) without relying on explicit regularizers, efficiently eliminating multiple types of
noise, including Gaussian and sparse noise, while maintaining edge integrity and
structural details. Similarly, (Zhou et al., 2022) developed a deep network-based
sparse denoising (DNSD) model for bearing fault diagnosis. Their method addressed
the limitations of traditional sparse theory algorithms by enhancing generalization
capability, reducing dependency on parameter tuning, and mitigating data-driven
complexity.

Tawfik et al. (2022) demonstrated that an extensive comparative analysis of image
denoising methodologies, classifying them into traditional non-learnable filtering
techniques and D_L-based frameworks. Their study introduced semi-supervised
denoising ftechniques and utilized both quantitative and qualitative metrics to
evaluate and contrast denoising performance across methods. In a related
contribution, (Meng & Zhang, 2022) presented a denoising gray image approach
leveraging a symmetric and dilated convolutional residual network. Their model
demonstrated outstanding performance in high-noise conditions, achieving superior
results in terms of Structural Similarity Index Measure (SSIM), Peak Signal-to-Noise Ratio
(PSNR), and Figure of Merit (FOM), while also enhancing the visual fidelity of images,
benefiting downstream applications such as target detection, recognition, and
tracking. Overall, image restoration remains an evolving field dedicated to recovering
and enhancing the visual image quality degraded by noise and distorfion. With
ongoing technological progress, the integration of advanced D_L architectures
confinues to redefine the benchmarks of image clarity, accuracy, and computational
efficiency, marking a significant step toward more inteligent and adaptive image
restoration solutions.

Image enhancement

The enhancement of the image is the process of modifying an image to enhance its
quality of visual quality, interpretability, and overall perceptual appeal. This process
involves a variety of transformations designed to show obscured information,
strengthen contrast, and sharpen structural edges, thereby producing a clearer and
highly informative image suitable for analysis, visualization, or presentation. The
primary objective of image enhancement is to make significant features within an
image highly distinguishable by optimizing attributes such as brightness, contrast, color
balance, and texture definition. Conventional image enhancement techniques
encompass several established methods, including histogram matching to adjust pixel
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intensity distributions, contrast-limited adaptive histogram equalization (CLAHE) to
improve local contrast, and denoising filters such as the Wiener and median filters to
suppress noise. Additionally, linear contrast stretching and unsharp masking are
frequently employed to increase image sharpness and visual clarity.

Recently, D_L-based approaches have emerged as a key tool for the enhancement
of images. These models, powered by large-scale datasets and advanced neural
architectures, are capable of autonomously learning intricate features and image
structures, allowing them to perform enhancement objectives with remarkable
precision and generalization. Various deep learning frameworks have been
developed, each offering unique advantages and presenting specific trade-offs, as
summarized in Table 2 of this study. Notable advancements include the inclusion of
Retinex theory and deep image priors within the Novel RetinexDIP model, which
effectively balances illumination and reflectance components. Other innovations,
such as robustness-enhancing fuzzy operations, address overfitting issues, while hybrid
models that fuse classical enhancement techniques such as Unsharp Masking, High-
Frequency Emphasis Filtering, and CLAHE with modern architectures like EfficientNet-
B4, ResNet-50, and ResNet-18, demonstrate improved generalization and robustness.

The FCNN Mean Filter offers high computational efficiency, and CV-CNN exploits
complex-valued convolutions to better represent phase and amplitude information.
Frameworks such as pix2pixHD and LE-Net (Light Enhancement Net) exhibit rapid
convergence and efficient performance, while Deep Convolutional Neural Networks
(DCNNs) continue to deliver powerful enhancement capabilities, albeit with sensitivity
to hyperactive parameter tuning. Moreover, the MSSNet-WS (Multi-Scale Stage
Network) architecture achieves effective convergence while mitigating overfitting.
Overall, this comparative analysis underscores the diverse merits of emerging deep
learning-based image enhancement techniques, highlighting their advancements in
convergence speed, robustness, overfitting mitigation, and computational efficiency,
thereby marking a significant evolution from fraditional enhancement paradigms.

Gao et al. (2022) infroduced an innovative method for low-light image enhancement
that integrates Retinex decomposition following an initial denoising stage. Their
approach utilizes the Retinex model to effectively restore image brightness and
confrast, thereby producing outputs with improved clarity, detail visibility, and
perceptual quality. The proposed framework was comprehensively evaluated against
several benchmark techniques, including LIME, NPE, SRIE, KinD, Zero-DCE, and
RetinexDIP across multiple performance metrics (Tables 1-5). Experimental results
demonstrated that (Gao et al., 2022) method not only achieved superior
enhancement in visual quality but also maintained high image resolution and
optimized memory efficiency, highlighting its effectiveness and practicality for real-
world low-light image restoration applications. Liu et al. (2020) investigated the role of
D_L iniris recognition by means of the implementation of Fuzzy Convolutional Neural
Networks (F-CNN) and Fuzzy Capsule Networks (F-Capsule). Their approach is
distinguished by the integration of Gaussian and friangular fuzzy filters, a new
enhancement mechanism that significantly improves the clarity and feature
extraction of iris images. A key strength of their framework lies in its seamless
compatibility with existing neural architectures, providing a practical and efficient
enhancement to conventional iris recognition systems. Muchtar et al. (2020)
combined D_L with models of image enhancement to address the challenge of
tuberculosis (TB) image classification. Their hybrid method employed Unsharp Masking
(UM) and High-Frequency Emphasis Filtering (HEF) alongside state-of-the-art
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architectures, namely EfficientNet-B4, ResNet-50, and ResNet-18. By systematically
assessing the performance of multiple enhancement algorithms, their study achieved
high accuracy and Area Under the Curve (AUC) scores, underscoring the efficacy of
integrating enhancement preprocessing with deep learning for precise and reliable
TB diagnosis.

Wang et al. (2021) proposed a new application of D_L to mitigate impulse noise in
degraded images with varying noise intensities. Their method infroduced a Fully
Connected Neural Network (FCNN) mean filter, which demonstrated superior
performance compared to conventional mean and median filters, particularly under
low-noise conditions. This contribution highlights the adaptability and efficacy of D_L
frameworks in image denoising and noise suppression contexts. Furthermore, Quan et
al. (2020) developed a non-blind image deburring model utilizihg a Complex-Valued
Convolutional Neural Network (CV-CNN). Their model uniquely incorporates Gabor-
domain denoising as a prior step within the deconvolution process, allowing the
network to better capture frequency-domain characteristics of blurred images.
Quantitative assessments based on Peak Signal-to-Noise Ratio (PSNR) and Structural
Similarity Index (SSIM) confirmed the model’'s superior deblurring performance,
emphasizing the potential of complex-valued CNNs as powerful tools for advanced
image restoration tasks.

Dan Zheng et al. (2021) utilized the pix2pixHD D_L framework to improve multidetector
computed tomography (MDCT) images, focusing specifically on the precise
measurement of vertebral bone structures. They documented that the capability of
D_L models to substantially enhance the interpretability and quality of complex
medicalimages, thereby supporting highly reliable and accurate clinical assessments.
Similarly, Guofa Yang et al. (2021) proposed a CNN-based architecture, LE-Net,
designed for image recovery under low-light conditions, with applications in driver
assistfance systems and connected autonomous vehicles (CAVs). Their findings
revealed that the proposed model outperformed both traditional enhancement
methods and several existing D_L models, emphasizing the effectiveness of
developing context-specific enhancement solutions tailored to real-world
operational environments.

Mehranian et al. (2022) explored the enhancement of Time-of-Flight (ToF) information
in positron emission tomography (PET) imaging using deep convolutional neural
networks. By integrating the block-sequential regularized expectation maximization
(BSREM) reconstruction algorithm with their D_L-ToF(M) model, they achieved superior
diagnostic performance, validated through key evaluation parameters, i.e., the
Frechet Inception Distance (FID) and Structural Similarity Index (SSIM). This study
highlighted the potential of D_L to enhance diagnostic precision and image fidelity in
advanced medical imaging modalities. In another significant contribution, Kim et al.
(2023) introduced the Multi-Scale-Stage Network (MSSNet), a novel D_L architecture
for single-image deblurring. Building upon a critical review of existing coarse-to-fine
approaches, their method achieved state-of-the-art performance across multiple
dimensions, including image quality, model efficiency, and computational speed,
setting a new benchmark for deep learning-based deblurring techniques. Overall,
image enhancement remains a cornerstone of modern image processing, serving to
elevate visual quality for both human interpretation and automated analytical
applications. The integration of fraditional image processing models with cutting-
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edge D_L frameworks continues to push the boundaries of what is achievable in terms
of image clarity, detail recovery, and computational efficiency.

Collectively, these studies illustrate the transformative potential of D_L across diverse
domains from medical imaging to low-light scene enhancement while simultaneously
addressing critical complexities such as generalization, computational constraints,
and detail preservation. Nevertheless, the research also acknowledges key limitations,
including restricted adaptability across heterogeneous datasets, potential loss of fine
structural details, and the complexities infroduced by real-world image variability. By
critically analyzing both the strengths and shortcomings of these approaches, this
body of work contributes to a more comprehensive understanding of the evolving
landscape of image enhancement, underscoring the importance of continued
innovation and refinement in this rapidly advancing field.

Image segmentation

The segmentation of an image is a primary process in computer vision that involves
partitioning an image into distinct and meaningful regions on the basis of visual
aftributes such as intensity, color, texture, or spatial proximity. This process enables the
extraction of relevant structures or objects from complex visual data. Broadly, image
segmentation is categorized into two primary types: instance segmentation and
semantic segmentation. While semantic segmentation assigns every pixel in an image
to a specific class, thereby delineating regions corresponding to different objects or
materials, instance segmentation extends this capability by distinguishing individual
occurrences of objects within the same category, offering a finer level of granularity.

Traditional segmentation techniques, which preceded the advent of D_L, relied
heavily on handcrafted features and domain-specific expertise. These methods
typically divide images into well-defined segments based on manually established
rules or statistical properties. Common examples include thresholding, which
separates object and background regions employing intensity thresholds; region-
based segmentation, which groups pixels with identical characteristics into cohesive
areas; and edge detection, which identifies boundaries by detecting abrupt intensity
changes. Although these conventional approaches have been instrumental in early
image analysis, they exhibit significant limitations in handling complex geometries,
noisy information, and dynamic or cluttered backgrounds. Furthermore, the manual
design of features for diverse contexts is both tfime-consuming and lacks
generalizability across varying image domains.

The rise of deep learning has revolutionized image segmentation, marking a profound
shift from manual feature design to automated feature learning. Deep neural
networks, particularly convolutional architectures, are able of learning rich,
hierarchical representations directly from the informatfion of raw images. This
capability enables them to capture subtle spatial dependencies and adapt
effectively to diverse visual environments. Consequently, deep learning-based
segmentation methods not only eliminate the traditional algorithms’ limitations but
also achieve superior accuracy, robustness, and scalability.

This paradigm shift has significantly expanded the frontiers of image analysis and
computer vision, paving the way for advanced applications in fields i.e., medical
imaging, autonomous systems, remote sensing, and industrial inspection. Table 3
displays a detailed overview of the strengths and limitations of the D_L models
explored in this study, illustrating how modern segmentation architectures continue to
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refine precision, adaptability, and computational efficiency across diverse imaging
contexts.

Ahmad. et al. (2020) conducted an extensive study on D_L-based semantic
segmentation techniques aimed at addressing the complex challenge of top-view
multiple-person segmentation. Their research evaluated the performance of several
prominent architectures—the Fully Convolutional Network (FCN), U-Net, and
DeeplLabVa. This line of inquiry holds substantial practical importance, as precise
segmentation of individuals in top-view imagery is essential for applications such as
video surveillance, crowd management, and human-computer interaction systems.
The comparative analysis revealed that DeeplabV3 and U-Net consistently
outperformed FCN in terms of segmentation accuracy. Both models achieved
notably high accuracy and mean Intersection over Union (mloU) scores, reflecting
their superior ability to delineate and classify multiple individuals within complex visual
scenes. The findings highlight the effectiveness of advanced convolutional
architectures in capturing spatial and contextual information, ultimately enabling
more precise and reliable segmentation outcomes. Overall, the study emphasizes the
pivotal role of state-of-the-art deep learning frameworks in enhancing the robustness
and precision of semantic segmentation, particularly in scenarios involving multiple
overlapping or interacting subjects.

Dongyang Su et al. (2020) infroduced an adaptive segmentation algorithm based on
the U-Net architecture, capable of effectively capturing both shallow and deep
image features. They specifically avoid the complexity of segmenting complex
boundaries, broader computer vision applications, and a critical task in medical
imaging. The model was validated on both liver cancer CT scans and natural scene
images, demonstrating clear advantages over conventional segmentation models.
The study highlights the potential of adaptive U-Net-based algorithms for accurately
handling intricate structures across diverse image datasets.

Ahammad et al. (2020) developed a novel D_L mechanism utilizing Convolutional
Neural Networks (CNNs) for the segmentation and diagnosis of Spinal Cord Injury (SCI)
features. This framework is particularly significant for medical imaging applications,
where accurate identification of spinal cord abnormalities is crucial. The proposed
model exhibited greater computational effectiveness and remarkable precision,
underscoring its potential for clinical implementation. By leveraging sensor-based SCI
image data, the study affirms the capacity of D_L to enhance diagnostic accuracy
and support informed patient care decisions. Lorenzoni et al. (2020) applied CNN-
based D_L models to automate the segmentation of microCT images of cement-
based composites, a task of great relevance in materials science and civil
engineering. Their research highlights the adaptability of D_L techniques,
demonstrating that network parameters optimized for high-strength materials can be
effectively transferred to other related contexts. The study highlights the utility of CNNs
in advancing automated material characterization and analysis.

Mahajan et al. (2021) proposed a clustering-based profound iterative D_L techniques
(CPIDM) for hyperspectral segmentation of images, addressing the specific
challenges posed by hyperspectral data in fields such as environmental monitoring
and remote sensing. The proposed method outperformed state-of-the-art
approaches, demonstrating superior segmentation accuracy and robustness. This
study contributes a novel methodology for effectively handling the high
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dimensionality and spectral complexity inherent in hyperspectral images, providing a
valuable tool for enhanced geospatial and environmental analysis.

Jalali et al. (2021) developed an advanced D_L-based framework for lung region
segmentation from CT images, utilizing a Bi-directional ConvLSTM U-Net with densely
connected convolutions (BCDU-Net). This approach is particularly significant for
medical imaging and lung-related diagnostic applications. The model demonstrated
high accuracy across a large dataset, highlighting its potential to assist radiologists in
precisely delineating lung regions. The study exemplifies the transformative impact of
sophisticated deep learning architectures in enhancing diagnostic precision within
healthcare.

Bouteldja et al. (2021) proposed a CNN-based method for multiclass segmentation of
stained kidney images across multiple species and renal disease models. This work is
particularly relevant to histopathological analysis and disease diagnosis, as it enables
accurate identification of diverse structural and pathological features. The method’s
robust performance across different species and disease conditions underscores its
reliability and utility in supporting pathologists for precise, image-based diagnostic
assessments.

Liv et al. (2021) intfroduced a novel CNN architecture featuring cross-connected layers
and multi-scale feature aggregation to enhance image segmentation capabilities.
This approach eliminates the growing need for advanced segmentation approaches
capable of capturing infricate image features and spatial nexus. The technique
achieved notable performance metrics, demonstrating its potential to improve
segmentation precision in a variety of applications—medical imaging, autonomous
framework, and robotics.

Saood and Hatem (2021) applied D_L networks, specifically SegNet and U-Net, to
segment COVID-19-infected regions in CT scans. This tfimely research contributes to
global efforts against the pandemic by providing accurate and automated
identification of infected lung areas. Their comparative analysis of network
performance offers valuable insights into the relative effectiveness of distinct D_L
architectures, highlighting the agility and practical applicability of these methods in
responding to urgent real-world challenges in medical imaging. Siti Rachmatullah et
al. (2020) infroduced a Mask R-CNN-based framework for the precise detection of
fetal septal defects, addressing the limitations of prior approaches. Their model
demonstrated accurate multiclass heart chamber segmentation, achieving
remarkable performance: right atrium (97.59%), left atrium (99.67%), left ventricle
(86.17%), right ventricle (98.83%), and aorta (99.97%). In terms of defect detection
within afria and ventricles, Mask R-CNN (MRCNN) achieved a mean Average
Precision (mAP) of 99.48%, significantly outperforming Faster R-CNN (FRCNN) at 82%.
The outcomes outline the potential of the proposed approach to assist cardiologists
in the early screening of fetal congenital heart disease. Park et al. (2021) proposed a
deep learning approach for intelligent food segmentation in images, leveraging Mask
R-CNN. To overcome the challenges of labor-intensive data collection, the authors
utilized synthetic datasets generated via 3D graphics software (Blender) for model
training.

The approach achieved 52.2% accuracy on real-world food instances using only
synthetic information and demonstrated an additional 6.4 percentage point
enhancement after fine-tuning, compared to training from scratch. This methodology
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presents strong potential for applications in healthcare robotics, such as automated
meal assistance systems. Pérez-Borrero et al. (2020) emphasized the importance of
fruit instance segmentation in the context of autonomous fruit-picking systems,
positioning Mask R-CNN as a benchmark model. Their study proposed methodological
modifications to enhance efficiency and infroduced the Instance Intersection over
Union (I2o0U) metric alongside the creation of the StrawDI_Db1 dataset, providing
practical contributions for real-world deployment. Collectively, prior research
underscores the transformative effect of D_L-based segmentation across diverse
domains, including medical imaging, agriculture, and robotics. By leveraging
advanced network architectures and innovative training strategies, these
approaches push the boundaries of image segmentation, enhancing accuracy,
efficiency, and applicability across complex real-world scenarios.

Feature extraction

The feature extraction is a critical process in computer vision and image processing,
involving the transformation of raw pixel data into a highly compact and informative
representation, commonly referred to as features. Such aspects capture essential
aftributes of animage, facilitating tasks, i.e., object recognition, image segmentation,
and classification, by enabling algorithms to more effectively interpret and analyze
visual information.

Before the adoption of D_L, traditional feature extraction approaches dominated the
field. These approaches primarily focused on analyzing pixel-level information and
transforming it info meaningful representations. Key techniques include:

o Principal Component Analysis (PCA): A statistical method that mitigates the
dimensionality of image details while retaining as much of the original variance as
possible. PCA identifies principal components or orthogonal axes, along which the
information exhibits the greatest variation, allowing for more efficient representation
and analysis.

o Independent Component Analysis (ICA): This technique seeks a linear
transformation of the information into statistically independent features. ICA s
partficularly useful for separating mixed sources in images, i.e, isolating different
overlapping image signals from a single composite image.

o Locally Linear Embedding (LLE): A nonlinear dimensionality reduction
approach that preserves the local structure of data points. LLE generates a low-
dimensional representation of the information while maintaining neighborhood nexus,
enabling the capture of subtle, intrinsic patterns within complex datasets.

Overall, these fraditional methods laid the groundwork for understanding and
representing image data, providing the basis upon which modern deep learning-
based feature exiraction techniques have built more powerful and automated
solutions.

Traditional feature extraction methods have long been employed to provide valuable
representations and insights for a variety of image analysis tasks. These approaches
typically rely on handcrafted features, designed based on expert knowledge or
domain-specific understanding. While effective in certain contexts, this process can
be labor-intensive and may lack generalizability between distinct datasets or tasks.
The conventional feature extraction involves transforming raw information into @
highly compact and informative representation by identifying specific characteristics
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or aftributes that capture essential patterns inherent in the information. The given
process is offen manually guided by domain expertise. For instance, in image
processing, techniques such as Histogram of Oriented Gradients (HOG) extract
gradient distribution information, whereas in text analysis, features like word
frequencies may be chosen to represent meaningful patterns. Despite their usefulness,
traditional methods have notable limitations. They often require significant expert
intervention to construct characteristics, which could be time-consuming and may
fail to capture complex nexus or subtle patterns in the information. Additionally, these
approaches can struggle with high-dimensional scenarios or datasets where
meaningful characteristics are not easily defined.

Contrarily, D_L-based techniques have tfransformed feature extraction by automating
the process. A deep neural network can learn hierarchical and discriminative features
directly from raw information, addressing the requirement for manual feature
engineering. The given capability allows them to capture complex patterns,
interactions, and nonlinear correlations that traditional techniques might overlook. As
a result, D_L has achieved remarkable performance across numerous domains,
particularly in complex tasks, i.e., speech processing, image recognition, and
multimodal data analysis. Table 4 provides a concise summary of the parameters,
strengths, and limitations of various D_L models employed for feature extraction and
enhancement.

Magsi et al. (2020) conducted a notable study in the field of agricultural disease
detection, focusing onidentifying diseases in date palm trees using D_L methods. Their
approach involved extracting color and texture features from images of diseased
plants and leveraging Convolutional Neural Networks (CNNs) to develop a system
capable of recognizing disease-specific visual patterns. The model achieved an
accuracy of 89.4%, demonstrating its effectiveness in precise disease identification.
Authors outline the potential of D_L for automated crop monitoring, emphasizing its
role in enhancing disease management, crop health, and agricultural productivity.

Similarly, Sharma et al. (2020) explored medical imaging applications, specifically
targeting chest X-ray analysis. The study involved a comprehensive evaluation of
various CNN architectures to extract relevant features from X-ray images. Importantly,
the researchers investigated the influence of dataset size on network performance,
demonstrating the scalability of D_L approaches in medical contexts. By employing
data augmentation and dropout models, the proposed technique attains a high
precision of 0.9068, underscoring its capacity to precisely classify and diagnose
conditions from chest X-rays. The research highlights the significant potential of D_L to
assist medical professionals in disease diagnosis and decision-making by means of
automated image analysis.

Zhang et al. (2020) presented a new approach to distinguishing between counterfeit
and genuine facial images generated by D_L techniques. Their method utilized a
Counterfeit Feature Extraction strategy based on a Convolutional Neural Network
(CNN), attaining an impressive precision of 97.6%. Beyond accuracy, the study
emphasized computational efficiency, highlighting the potential to reduce
processing demands in counterfeit image detection. The study is highly relevant in the
current digital era, where ensuring the images’ authenticity is increasingly critical.

Simon and V (2020) explored the integration of D_L and feature exiraction for the
classification of images and their texture analysis. Authors employed CNN frameworks,
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i.e., AlexNet, VGG19, Inception, InceptionResNetV3, ResNet, and DenseNet201 to
extract meaningful image characteristics, which were subsequently classified
employing a Support Vector Machine (SVM). The models achieved precise levels
ranging from 85%-95% across various prefrained architectures and datasets,
demonstrating the effectiveness of combining D_L-based feature extraction with
traditional ML for robust image analysis.

Sungheetha and Sharma (2021) tackled the detection of diabetic conditions by
identifying specific indicators within retinal blood vessels. Their approach utilized a
deep feature CNN capable of recognizing subtle pathological patterns, achieving a
remarkable accuracy of 97%. This study outlines the potential of D_L to enhance
medical diagnostics by capturing intricate visual patterns indicative of disease,
thereby supporting early detection and clinical strategic choices.

Devulapalli et al. (2023) infroduced a hybrid feature extraction approach that
combined Gabor transform-based texture characteristics with high-level automated
features from the GoogleNet architecture. Using pretrained models, i.e, AlexNet,
VGG16, and GoogleNet, the research achieved superior precision, with the hybrid
approach outperforming individual pretrained models. This demonstrates the value of
integrating multiple feature extraction models to enhance performance in complex
tasks of image analysis.

Shankar et al. (2022) focused on COVID-19 diagnosis using chest X-ray images through
a multi-step pipeline. The approach involved preprocessing via Wiener filtering, fusion-
based feature extraction using GLCM, GLRM, and LBP, followed by classification with
an Artificial Neural Network (ANN). By carefully selecting the best feature subsets, the
approach achieved robust differentiation across healthy patients and infected
patients, highlighting the adaptability and utility of D_L frameworks in eliminating
urgent global health complexities and medical diagnostic tasks.

Ahmad et al. (2022) document notable advancements in breast cancer detection
by developing a hybrid D_L approach, AlexNet-GRU, which allows autonomously
extracting characteristics from the PatchCamelyon benchmark dataset. The method
exhibited high precision in identifying metastatic cancer within breast tissue and
outperformed existing state-of-the-art methods. This research underscores the
transformative potential of D_L in medical imaging, particularly for precise cancer
classification and detection.

Sharif et al. (2021) addressed the challenges of detecting gastrointestinal tract (GIT)
infections employing wireless capsule endoscopy (WCE) images. The proposed model
combined deep convolutional neural networks (CNNs) with geometric feature
extraction to tackle the complexities associated with lesion characteristics. By
integrating contrast-enhanced color features with geometric attributes, the model
achieved remarkable classification precision and accuracy, demonstrating the
effectiveness of combining D_L with ftraditional feature-based techniques. This
methodology highlights the potential for enhanced medical diagnostics by means of
the fusion of different data sources.

Aarthi and Rishma (2023) tackled real-world challenges in waste management by
infroducing a real-time automated waste detection and segregation system using
Mask R-CNN. Their model successfully identified and classified waste objects in real
time, while also incorporating geometric feature extraction to facilitate manipulation
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that is more effective by robotic arms. The given innovative framework not only
examines environmental issues relevant to waste disposal but also illustrates the
broader applicability of D_L beyond conventional image analysis, enhancing
operational efficiency and mitigating environmental risks. Prior research collectively
outlines the effectiveness of CNNs, hybrid models, and innovative D_L mechanisms in
achieving high accuracy and enhanced performance across diverse applications,
including disease detection, image analysis, and counterfeit identification. By
automating the extraction of meaningful features, these approaches reduce reliance
on manual feature engineering and improve analytical precision. However,
challenges such as computational complexity, dataset quality, and real-world
variability remain critical considerations for practical deployment, necessitating
careful design and evaluation to ensure robust and reliable performance in real-world
scenarios.

Image classification

The classification of images is a core task in computer vision, involving the assignment
of images to predefined categories or labels. The objective is to allow machines to
recognize and differentiate patterns, scenes, or objects within visual data. Prior to the
rise of D_L, traditional classification models played a central role in data analysis.
Methods such as Decision Trees, Support Vector Machines (SVM), Naive Bayes, and k-
Nearest Neighbors (k-NN) were commonly employed. In these approaches, experts
manually designed and selected features that capture relevant details from the
information. Such features, informed by domain knowledge, aim to highlight
discriminative characteristics that distinguish between classes. While effective for
many applications, conventional methods often require labor-intensive feature
engineering and may struggle to capture distinct patterns or nonlinear nexus inherent
in large and intricate datasets. Once selected, these features serve as inputs for
classification algorithms, which assign data points to classes based on predefined
rules and criteria. Table 5 provides a concise summary of the strengths and limitations
of various deep learning models applied to image classification. In the medical
imaging field, Abdelaziz Ismael et al. (2020) proposed a D_L-based approach utilizing
Residual Networks (ResNets) for brain tumor classification. Their study analyzed a
benchmark dataset of 3,064 MRI images encompassing three tumor types. The
proposed model attained an impressive precision of 99%, surpassing prior methods
and demonstrating the effectiveness of deep architectures in capturing subtle and
complex tumor patterns.

In the domain of remote sensing, Xu et al. (2021) examined the integration of
Recurrent Neural Networks (RNNs) with Random Forests for remote sensing image
classification. By optimizing cross-validation procedures on the UC Merced dataset
and performing extensive comparisons with alternative D_L models, their method
achieved a notable accuracy of 87%, highlighting the applicability of D_L models in
geospatial image analysis.

Texture analysis and classification have gained notable attention due to their
applications across medical, agricultural, and environmental domains. Aggarwal and
Kumar (2021) proposed a novel D_L mechanism on the basis of Convolutional Neural
Networks (CNNs), consisting of two sub-models for texture classification. Their
outcomes were remarkable, with Model-1 attaining 92.42% accuracy and Model-2
further improving to 96.36%, demonstrating the effectiveness of CNN-based
approaches in capturing discriminative texture patterns.
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Abdar et al. (2021) infroduced a hybrid dynamic Bayesian D_L (BD_L) model
incorporating Three-Way Decision (TWD) theory for skin cancer diagnosis. By
infegrating multiple uncertainty quantification (UQ) methods with deep neural
networks across different classification stages, their approach achieved high precision
and Fl1-score on two benchmark skin cancer datasets, highlighting the potential of
combining probabilistic reasoning with deep learning for robust medical diagnostics.

lorahim et al. (2024) further advanced medical image classification by utilizihg a
pretrained AlexNet model to classify COVID-19, pneumonia, and healthy chest X-ray
scans. The proposed approach demonstrated strong performance in both three- and
four-ways classification tasks, attaining greater precision, sensitivity, and specificity,
reinforcing the efficacy of transfer learning in rapid disease detection.

Addressing resource-constrained image classification, Ma et al. (2022) proposed a
deep CNN classification approach with knowledge transfer. The model outperformed
traditional histogram-based approaches, attaining an impressive precision of 93.4%,
highlighting the efficiency of leveraging prefrained knowledge for improved
classification performance.

In agricultural applications, Gill et al. (2023) developed a hybrid CNN-RNN model for
fruit classification, demonstrating high efficiency and accuracy suitable for quality
assessment and sorting. Similarly, Aish et al. (2022) employed VGGI16 for fruit
classification, achieving 100% accuracy, underscoring the potential of deep learning
to deliver perfect classification results in real-world scenarios.

Sharma et al. (2022) focused on breast cancer diagnosis, applying CNNs with fransfer
learning and achieving a notable accuracy of 98.4%, reinforcing the role of deep
learning in  augmenting medical diagnostic capabilities. Beyond medical
applications, Yang et al. (2022) applied various CNN architectures for urban wetland
identification, with DenseNet121 emerging as the best-performing model. The high
Kappa and Overall Accuracy (OA) values obtained emphasize the significance of
deep learning for land cover and environmental classification tasks.

Collectively, these studies demonstrate the versatility, effectiveness of CNN-based,
and hybrid deep learning models across diverse domains, achieving high accuracy,
efficiency, and practical applicability in both medical diagnostics and environmental
analysis.

Archana and Jeevaraqj (2024) explored Alzheimer’s disease detection using a 12-layer
CNN model, achieving an impressive accuracy of 97.75% on the OASIS dataset. Their
approach outperformed existing CNN architectures and was validated through direct
comparisons with pre-trained models, demonstrating its effectiveness in enhancing
early and accurate detection of Alzheimer’s disease.

In the industry of textile, Gao et al. (2019) examined fabric defect detection with a
deep convolutional neural network incorporating multiple convolution and max-
pooling layers. The model achieved a greater detection precision of 96.52%,
highlighting its potential for practical applications in real-world manufacturing
settings.

Expanding to neurological disorders, Vikas and Rao (2021) developed a hybrid 2D
CNN-LSTM model for ADHD classification using resting-state functional MRI (rs-fMRI)
data. Their method demonstrated notable improvements in precision, specificity,
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sensitivity, Fl1-score, and AUC compared to existing approaches, indicating the
promise of D_L in accurately distinguishing ADHD from healthy conftrols.

Skouta et al. (2021) analyzed the retinal image classification, leveraging CNNs to
differenfiate between proliferative and normal diabetic retinas, achieving a
classification accuracy of 95.5%. The use of an expanded dataset enabled the
capture of fine-grained features, ensuring robust and reliable classification outputs.

Collectively, previous literature highlights the transformative impact of D_L across
diverse image classification tasks, spanning medical diagnostics, texture analysis,
industrial inspection, and neurological disorder detection.

While traditional methods maintain certain strengths, they rely heavily on expert-
driven feature selection and algorithm tuning. Such approaches often struggle with
high-dimensional and complex datasets, requiring extensive manual effort in feature
engineering, and may lack adaptability to evolving information distributions or new
types of data. Contrarily, D_L automates feature extraction, learning hierarchical
representations directly from raw information. This enables the capture of intricate
patterns and correlations that traditional models might overlook. Convolutional Neural
Networks (CNNs) excel in image-based tasks, whereas Recurrent Neural Networks
(RNNs) are particularly effective for sequential data. Overall, deep learning models
frequently surpass traditional approaches, providing superior performance in complex
classification tasks across multiple domains.

DISCUSSION

The given review presents a synthesized overview of recent deep learning
advancements across image denoising, segmentation, enhancement, feature
extraction, and classification, outlining the capabilities, strengths, and limitations of
distinct approaches in diverse application domains.

In the image denoising realm, multiple D_L models have emerged, each with distinct
advantages and trade-offs. The Self2Self neural network reduces computational cost
while relying on data augmentation, DnCNNs enhance denoising accuracy but face
resource constraints, and DFT-Net manages label imbalance at the risk of losing fine
details. MPR-CNN emphasizes robustness through careful hyperparameter tuning,
whereas R2R models strike a balance across noise reduction and computational
effectiveness. Traditional CNN architectures effectively prevent overfitting, HLF-DIP
achieves high performance despite complexity, Noise2Noise models balance
efficiency with generalization, and ConvNet expands receptive fields while facing
interpretability challenges. Collectively, these approaches illustrate the evolving
landscape of denoising techniques in image processing.

Regarding image enhancement, studies have explored a variety of deep learning
methods. Ming Liu et al. employed Fuzzy-CNN and F-Capsule models for iris
recognition, achieving robustness and mitigating overfitting. Additionally, scholars
combined fraditional enhancement techniques with EfficientNet and ResNet
architectures for tuberculosis imaging, improving generalization while contending
with time and memory demands. Moreover, prior research implemented FCNN mean
filters to reduce noise with minimal detail loss, while another stream of literature used
CV-CNN for efficient image deblurring. Other approaches include pix2pixHD for high-
quality MDCT image enhancement, LE-net for low-light recovery, RetinexDIP for
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accelerated convergence and runtime reduction, and MSSNet-WS for single-image
deblurring, emphasizing computational efficiency in real-world applications.

In the segmentation of images, both semantic and instance segmentation
approaches demonstrate substantial advancements. Semantic segmentation
leverages models like FCN, U-Net, and DeeplLabV3 for tasks such as multi-person
detection and object recognition, achieving loU and mloU scores between 80% and
86%. Instance segmentation methods, including Mask-RCNN and AFD-UNet,
accurately delineate individual objects, enabling applications in medical imaging,
real-time waste collection, and more. These approaches reduce manual intervention,
improve boundary delineation, and save processing time, though challenges remain
in computational complexity, hardware requirements, and model customization.

For feature extraction, deep learning has been applied to diverse domains, from
texture and color analysis to pattern and geometric feature recognition. One strand
of research achieved 89.4% accuracy in disease detection, while another strand of
research reached 97% accuracy in counterfeit detection. Similarly, earlier studies
reported 97% accuracy for retinal images, forinstance, research achieved 95.1-95.7%
accuracy for chest X-rays using GLCM, GLRM, and LBP with ANN, and another study
reached 99.5% accuracy for PCam images using AlexNet-GRU. Geometric feature
extraction was demonstrated in literature (99.4% accuracy in capsule endoscopy)
and another study (97% accuracy in real-time waste detection with Mask-RCNN),
showcasing the flexibility of deep learning for extracting diverse image features.

In image classification, D_L models have proven highly effective across multiclass and
binary tasks. For multiclass classification, research used ResNet to achieve 99%
accuracy for brain tumor MRI images, a previous study reached 92.42% on Kylberg
Texture datasets, and also a study achieved 94% for lung condition classification using
AlexNet. Fruit classification studies (CNN-RNN hybrid) and (VGG16) demonstrated
100% accuracy. In binary classification, research achieved 97.75% for Alzheimer’s
detection, 96.52% in fabric defect detection, 95.32% for ADHD diagnosis using CNN-
LSTM, and 95.5% for diabetic retinopathy detection.

Overall, the literature illustrates the adaptability, robustness, and high performance of
deep learning across diverse image processing tasks. They also highlight persistent
challenges, including dataset biases, computational intensity, interpretability, and
real-world variability, which must be considered when implementing these methods
in practical applications.

CONCLUSIONS

The systematic review undertakes a comprehensive examination of the diverse image
processing domains—denoising, enhancement, segmentation, feature extraction,
and classification. Through a detailed analysis and comparison of these
methodologies, the review provides a panoramic perspective on the current
framework of image processing, outlining both the strengths and the inherent
complexities relevant to theirimplementation. In the denoising of images, techniques,
i.e., Self2Self Neural Networks, DNCNNs, and DFT-Net demonstrate significant efficacy
in noise mitigation. However, persistent complexity remains, including extensive
preservation and the optimization of hyperparameters. For image enhancement,
methods, i.e., Novel RetinexDIP, Unsharp Masking, and LE-net effectively enhance the
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quality of visual, but experience difficulties in managing complex scenes while
maintaining image authenticity.

Segmentation approaches range from foundational to advanced models, offering
reliable object delineation. However, robustness issues arise in scenarios involving
overlapping objects. Feature extraction methodologies, spanning from standard
CNNs to LSTM-augmented CNNs, successfully capture essential image features,
though considerations of computational efficiency and adaptability are critical. In
the domain of classification, architectures from Residual Networks to CNN-LSTM
hybrids demonstrate strong potential for precise categorization. Challenges, yet,
persist in terms of information dependency, computational demands, and approach
interpretability. By systematically reviewing these methodologies, this paper provides
nuanced insights into their respective advantages and limitations, enabling scholars
to make optimal decisions regarding model selection for particular applications.

Furthermore, the review encompasses a broad spectrum of applications, including
medical and satellite imagery, botanical analyses of flowers and fruits, and real-tfime
scenarios. The domain-specific adaptations of deep learning techniques underscore
their versatility and effectiveness across complex, real-world contexts. As image
processing continues to evolve, addressing challenges such as computational
complexity and interpretability will be essential to fully harness the potential of these
methodologies.
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Table 1. D_L Approaches for Restoration of Image

Bano, A, & Salamat, M., (2025)

— Model / Dataset / Performance Limitations /
Study / Authors  Application /Task Architecture Domain Metrics Key Strengths Challenges
. . Improved . . . o
Gao et al. (2022) Low-light image RetinexDIP Generalimages brightness & High visual clarity, low Complexity in real-
enhancement memory usage world scenes
contrast
Avoids overfitting,
Liu et al. (2020) Iris recognition Puzzy-CNN, F- Iris datasets RObUST. . mfegrgTes . Sensitive to noise
Capsule recognition Gaussian/triangular fuzzy

Muchtar et al.
(2020)

Wang et al.
(2021)

Quan et al.
(2020)

Jin et al. (2021)

Li et al. (2021)

Kim et al. (2023)

Ahmad. et al.
(2020)

Wang et al.
(2020)

Siti Rachmatullah
et al. (2020)

Park et al. (2021)

Magsi et al.
(2020)

Tuberculosis X-ray
classification

Noise reduction

Image deblurring

MDCT image
enhancement

Low-light recovery

Single-image
deblurring

Multi-person top-
view segmentation
Complex
boundary
segmentation
Fetal heart defect
detection

Food instance
segmentation

Date palm disease
detection

EfficientNet-B4,
ResNet-50, ResNet-
18 with UM & HEF

FCNN Mean Filter

CV-CNN with
Gabor-domain prior

pix2pixHD

LE-net

MSSNet-WS$

FCN, U-Net,
DeeplabV3

Adaptive UNet

Mask-RCNN

Mask-RCNN with
synthetic data

CNN

TB X-ray images
Degraded
images

General images

Medical CT
images

CAV / driver-
assistance
images

General images

Surveillance
datasets

Liver CT, natural
images

Ultrasound fetal
images

Food datasets

Agricultural
images

112

Accuracy & AUC
high

PSNR
improvement

PSNR, SSIM
improved

Structural clarity

Visual
improvement
meftrics

PSNR, SSIM

Accuracy, mloU

Accuracy,
boundary
delineation

MAP ~99.48%

52.2% — +6.4%
after fine-tuning

Accuracy 89.4%

filters

Enhanced generalization

Efficient noise reduction

Prevents overfitting

High-quality enhancement

Generalization, robustness

Computationally efficient

High segmentation
precision

Handles shallow & deep

features

Accurate multi-class
detection

Reduces real-world
annotation burden

Automated disease
detection

High computational
demand

Minor detail loss in
low-noise images

Computationally
infensive

Risk of overfitting

Limitations in real-
world lighting
condifions

Model complexity

Requires large
labeled datasets

Hardware intensive

High computational
cost

Domain adaptation
required

Dataset limitations
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S Model / Dataset / Performance Limitations /
Study / Authors  Application /Task Architecture Domain Metrics Key Strengths Challenges
Zhang et al. FZounTerfelf fogol CNN SynThghc/reoI Accuracy 97.6%  Efficient & fast May struggle with
(2020) image detection facial images novel attacks
Sungheetha and Diabetic retinal L Detects subtle visual Sensitive to image
Sharma (2021) detection Deep CNN Refinalimages  Accuracy 97% patterns quality
Ahmad et al. Breast cancer ) . Superior metastatic tissue  Requires large
(2022) detection AlexNet-GRU PCam dataset  High accuracy detection annotated datasets
Hussain et al. Alzheimer’s ) Surpasses pre-trained Computationally
(2020) detection 12-layer CNN OASIS MRI Accuracy 97.75% models heavy
Vikas and Rao Complex
(2021) ADHD classification CNN-LSTM rs-fMRI Accuracy 95.32% Sequential data handling  preprocessing
required
Skouta et al Dicbetic Requires large
’ retinopathy CNN Retinalimages  Accuracy 95.5% High feature capture N 9
(2021) . datasets
detection
Gill et al. (2023)  Fruit classification  CNN-RNN Agricultural High accuracy sequential & spatial Sen.sm\./.e fo dataset
dataset features variability
Abu-Jamie ef al. . e . . e - Limited generalization
(2022) Fruit classification  VGG16 Fruit dataset Accuracy 100%  High classification precision to new datasets
Sharma and Breast cancer CNN + Transfer s Rapid training, high Relies on quality
Mishra (2022) diagnosis Learning Medicalimages  Accuracy 98.4% performance pretrained weights
Image .
Ma et al. (2022) classification under CNN + Knowledge Generalimages Accuracy 93.4% Efficient with limited data T_ro.nsfgr learning
. Transfer limitations
constraints
Table 2. D_L Approaches for enhancements of image
Study / Model / Dataset/ Performance Limitations / Hyperparameters / Convergence
Authors Task Architecture Domain Metrics Key Strengths Chadllenges Tuning / Efficiency
Quan et Image Noisy Cost reduction, Dependent on Needs careful learning  Moderate
i Self2Self NN X PSNR, SSIM data . .
al. (2020) denoising images . data quality rate scheduling convergence
augmentation
Yan et al. Speckle noise DHSPI Accurate noise May lose fine ) . High
(2020) reduction DnCNN images MSE removal details Layer depth, filter size efficiency
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Study /
Authors

Sori et al. Medical image

(2020)

Hasti and
Shin
(2022)
Niresi
and Chi
(2022)

Gao et
al. (2022)

Liu et al.
(2020)
Muchtar
et al.
(2020)

Jinet al.
(2021)

Liet al.
(2021)

Kim et al.
(2023)
Ahmad.
et al.
(2020)

Wang et
al. (2020)

Task

denoising

Fuel spray
image
denoising
Hyperspectral
image
denoising

Low-light
enhancement

Iris image
enhancement

X-ray
enhancement

MDCT image
enhancement

Low-light
recovery

Single image
deblurring

Multi-person
segmentation

Complex
boundary
segmentation

Model /
Architecture

Two-path CNN

Modified U-Net

HLF-DIP
(unsupervised)

RetinexDIP

Fuzzy-CNN, F-
Capsule

EfficientNet-B4,

ResNet-50/18

pix2pixHD

LE-net

MSSNet-WS

FCN, U-Net,
DeeplLabV3

Adaptive UNet

Dataset /
Domain

CTlung
images

Spray
images

HSI images

Low-light
images

Iris dataset

TB X-ray

CTimages

CAV/
driver-
assistance
images
General
images

Top-view
images

Liver CT,
natural
images

Performance
Metrics

Accuracy,
sensitivity,
specificity

MSE, PSNR

Noise removal

efficiency

PSNR, visual
clarity

Accuracy

Accuracy,
AUC

PSNR, SSIM

PSNR, visual
improvement

PSNR, SSIM

Accuracy,
mioU

Accuracy

Key Strengths

Robust feature
extraction

Limitations /

Challenges
High
computational
cost

Superior to CNN & Complex

ResNet

Handles mixed

noise, preserves

edges

Brightness &
contrast
restoration

Avoids overfitting

High
generalization
High-quality

image
enhancement

Robust in real-
world scenarios

Computationally

efficient

Accurate multi-

person
segmentation

Handles shallow &

deep features
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architecture

High
computational
complexity
May struggle
with complex
scenes

Sensitive to
noise

High
memory/time

Risk of
overfitting

Sensitive to
extreme
conditions

Complex model

Needs large

labeled dataset

High
computational
cost

Hyperparameters /
Tuning

Filter numbers, kernel size

Learning rate, epochs

Minimization parameters

Iteration number,
decomposition layers

Fuzzy filter parameters

Learning rate, batch size

Generator/discriminator
layers

Network depth, learning
rate

Stage numbers, kernel
size

Filter size, depth

Layer numbers, kernel
size

Convergence
/ Efficiency

Moderate

Moderate

Slower
convergence

Efficient

Fast
convergence

Moderate

Moderate
convergence

Fast

Fast

Moderate

Moderate
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Study / Model / Dataset/ Performance Limitations / Hyperparameters / Convergence
Authors Task Architecture Domain Metrics Key Strengths Challenges Tuning / Efficiency
Nurmaini Fetal heart Ultrasound Multiclass High
et al. instance Mask-RCNN images MAP 99.48%  chamber computational ROl size, learning rate Moderate
(2020) segmentation 9 detection demand
. Reduces real- Domain
Park et Food msfoqce MOSK'R.CNN N .FOOd loU 52.2% — world annotation adaptation Anchor box size Moderate
al. (2021) segmentation synthetic data images +6.4% -
need required
Magsi et Feature CNN gi?;i‘fedm Accuracy Automated Dataset Layer depth, learning Fast
al. (2020) extraction . 89.4% disease detection limitations rate
images
Facial
Zhang et Feature images Accuracy - May fail on . .
al. (2020) extraction CNN (real &  97.6% Efficient & fast Vel attacks  er size. epochs Fast
fake)
Table 3. D_L Approaches for segmentation of an image
Author Methodology Dataset Eﬁgﬁ:gn Performance Advantages Limitations
Quan et Self2Self Neural Set9, BSD68 SSIM, PSNR PSNR: 37.52: SSIM: 0.980 Reduces annotation Dependen’r_on data
al. (2020) Network (NN) cost augmentation
Yan et al. Denoising CNNs Simulated fringe MSE 0.8654 Enhances wrapped High compufro'hongl cost
(2020) pattern dataset phase accuracy and long training time
Soriet al.  DFT-Neft for denoising CT scan images g\ecccglrlocy, R: 0.874:S:0.891: A: 0.878 iErggc’;vkeJIgehlondles Possible detail loss during
(2020) and detection (KDSB, LUNA16) . F0.0/4 5 067 AL, mag denoising
Specificity imbalance
. Chest X-ray . .
Jiang et al. MPR—CNN (Por.o.llel images (COVID- PSNR, SSIM PSNR: 36.368: SSIM: 0.895 Robgsf and time- Requwes hyperparameter
(2021) Residual Denoising) 19) efficient funing
. . . Achievesresults . . .o
Pang et al. ¢or Noise Reduction SIDD Benchmark PSNR, SSIM Noise = 50 — PSNR: 26.13: - Smparable to Computationally infensive;
(2021) SSIM: 0.709 - o limited noise handling
supervised training
. Standard and . . .
Hasti and 1, ified CNN Mie scattered —\or boNR  MSE: 0.0053; PSNR: 22.757  Prevents overfitting 191 fime and memory
Shin (2022) image dataset consumpftion

Architectures
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Evaluation

Author Methodology Dataset Metrics Performance Advantages Limitations
Niresiand HLF-DIP Algorithm for HYDICE HSI MPSNR, MSSIM, Noise : 40 H,MPSNR,: 49'49_; No regularizers; user- Requw.es single por'ome.Ter
Chi (2022) HSI Denoising datasets MSAM, MFSIM MSSIM: 0.998; MSAM: 0.024; friendly approach funing; struggles with mixed

’ MFSIM: 0.999 noise
Tawfik et Noise2Noise . . . . Cost- and time- Limited generalization
al. (2022)  Denoising Model MCT images PSNR, SSIM PSNR: 20.607; SSIM: 0.546 officient ability
Meng and . . . . ;
Zhang ConvNet for.C?roy BSD-68 PSNR, SSIM, PSNRI. 26.44; SSIM: 0.6797; Improved receptive Poor interpretability
Image Denoising FOM FOM: 1 field
(2022)
Table 4. D_L Approaches for Feature Extraction
Author Methodology Dataset Metrics Results Type Advantages Disadvantages
Magsi et al. CNN Date palm disease Accuracy 89 4% Texture / Focused and domain-  Limited generalization
(2020) images (ACC) 72 Color specific approach capability
Data augmentation for  Disease specificity;
Sharma et al. Chest X-ray overfitting prevention; model complexity;
(2020) CNN dataset (Kaggle) Accuracy, Loss 90% Texture high scalability and dataset quality; limited
accuracy real-world applicability
Reduced space and Needs improvement in
Zhang et al.  Novel counterfeit feature FOCE-swaD iMages Accuracy 97% Counterfeit time complexity; faster  robustness under
(2020) extraction with CNN P 9 (ACC) ° convergence and compression
fraining efficiency conditions
Simon and V AIexNg’r, vGGI9. KTH-TIPS, CURET, Comprehensive review .
Inception, Accuracy . Lack of empirical
(2020) . and flower Texture of multiple CNN .
(Review) InceptionResNetV3, datasets (ACC) architectures comparison results
ResNet, DenseNet201
Class score,
Sungheetha Accuracy, High flexibility and .
L - o Limited model
and Sharma  CNN Retinal images Precision, 97% Pattern adaptability for pattern o
g o customization
(2021) Specificity, recognition
Recall
Devulapalli et UC Merced Similarity Hybriq feo’rure extraction High computational
GoogleNet model dataset (USGS : 90% Texture combining Gabor-based -
al. (2023) . metrics, ) complexity
National Map - texture with
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Author Methodology Dataset Metrics Results Type Advantages Disadvantages
metropolitan Precision, GoogleNet's deep
region) Recall, MAP features
Accuracy, Efficient feature
Shankar et al. FM-ANN, GLCM, GLRM,  Chest X-ray Sensitivity, 95.1% — Texture extraction and Limited model
(2022) and LBP images Specificity, F-  95.7% optimized parameter interpretability
score tuning
Accuracy, . . .
Ahmad et al.  AlexNet-GRU hybrid PCam dataset  Precision, High accuracy and High computational
s 99.5% Color enhanced performance cost and need for
(2022) model (Kaggle) Sensitivity, - -
e meftrics specialized hardware
Specificity
. Wireless capsule ACC%’TO.CV' Reduced applicability
Sharif et al. Sensitivity, . . . . :
CNN endoscopy e 99.4% Geometric Fast computation time  inreal-time
(2021) ) Specificity, FPR, .
images - environments
AUC, Precision
High robustness and A
Aarthi and Real-time waste . effective operation in Relicbility F:hollenges
. MRCNN . Accuracy 97% Geometric . and real-fime
Rishma (2023) images waste segregation .
efficiency concerns
systems
Table 5. D_L Approaches for classification of image
Avuthor Model(s) Dataset Metrics Accuracy Type Advantages Disadvantages
Abdelaziz . . Precision, Recall . Shoricut connections . .
Residual MRI'image ’ ! Multi-  enhance accuracy and Limited or unrepresentative
Ismael et al. F1-Score, 99% o S . o
Networks dataset class  mitigate vanishing data impacts generalization
(2020) Accuracy (%) .
gradients
RNN and Data dependency, high
Xu et al. Precision, Recall, Multi-  High accuracy, automated computational cost,
Random UC Merced 87% : A -
(2021) Forest Accuracy (%) class  feature learning, scalability interpretability challenges,
overfitting risk
Aggarwal Kylberg Precision, Recall, Flexible design, domain Requires extensive labeled
and Kumar  CNN Texture F1-Score, 92.42% Pattern adaptation, reduced do?o for subervised frainin
(2021) dataset Accuracy (%) overfitting P 9
Abdar et al. TWDBDL Skin cancer Area Underthe Binar Strong discriminative Model performance sensitive to
(2021) datasets Curve (AUC) Y capability data imbalance
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Author

lorahim et al.
(2024)

Kong et al.
(2022)

Gill et al.
(2023)

Abu-Jamie et
al. (2022)

Hussain et al.
(2020)

Gao et al.
(2019)

Vikas and
Rao (2021)

Skouta et al.
(2021)

Model(s)

AlexNeft
model

CNN and
SVM hybrid

Hybrid
CNN-RNN

VGG16

CNN

CNN

CNN-LSTM

CNN

Dataset
Lung condition
images

Caltech256

Fruits dataset

Fruit dataset

OASIS MRI
data

Fabric images

ADHD-200
(multi-site
data)

Diabetic
refinopathy
dataset

Metrics

Sensitivity,
Specificity,
Accuracy (%)

Accuracy
analysis

Precision, Recall
F-measure,
Accuracy (%)

Precision, Recall,
F-measure,
Accuracy (%)

Precision, Recall,
F1-Score,
Accuracy (%)

Detection
accuracy, False
alarm rate, etc.

Specificity,
Sensitivity, F1-
Score, Accuracy
(%)

Sensitivity,
Specificity,
Accuracy (%)

Accuracy

88.95% — 90.96%

93.4%

" — (Impressive

performance)

100%

97.75%

96.52%

95.32%

95.5%

Type

Multi-
class

Multi-
class

Multi-
class

Multi-
class

Binary

Binary

Binary

Binary

Advantages

Flexible hybrid approach
and efficient uncertainty
quantification

Improved generalization
and reduced overfitting

Sequential labeling and
strong comparative
performance

Exceptional accuracy,
effective CNN utilization

High performance,
enhanced accuracy
through direct comparison

Prevents overfitting,
ensures faster
convergence, supports
insightful error analysis

Improved diagnostic
precision and intelligent
ADHD detection potential

Accurate automated
screening enabling rapid
diagnosis

Disadvantages

Limited computing resources
and small dataset size for
COVID-19 pneumonia cases
High complexity, interpretability
limitations, reliance on labeled
samples

High data dependency and
computational intensity

Potential overfitting, dataset
bias, limited generalization to
unseen data

Model complexity and limited
applicability beyond specific
dataset

Limited dataset size,
generalization issues,
challenges in subtle defect
detection

High computational demand,
data quality dependency,
limited contextual
interpretability

Dependent on image quadlity,
architectural optimization, and
network depth tuning
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