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In image processing, there are many different methods used to 

process pictures. This includes denoising, enhancement, 

segmentation, feature extraction, and classification. All of them join 

together to solve different problems and understand the changes 

in images. They are useful in many ways, like in medicine, security, 

photography, and robotics. Where images need to be studied or 

improved. Drawing on visual information, these methods help us in 

comprehending images, extracting key data, and making informed 

choices. There are two main ways to process the image, which are 

through traditional image-processing methods and deep-learning 

models. Usually, traditional techniques depend on manually 

designed algorithms and rules. Which uses fixed steps to process 

images. In contrast, deep learning models learn features directly 

from the information itself, enabling them to automatically detect 

distant details that traditional techniques could miss.  The things that 

help the image processing methods to proceed are like Self2Self NN, 

Denoising DFT-Net CNNs, and MPR-CNN, which help remove 

unwanted noise from images in denoising. However, they still face 

difficulties with data preparation and adjusting model settings. 

While in an image enhancement, R2R and LE-net are employed to 

enhance the image’s visual quality, through which they can deal 

with complex real-world images and help them to look natural. On 

one hand, in the segmentation, PSP Net and Mask-RCNN methods 

accurately separate objects in an image; however, they can face 

problems with overlapping objects and ensuring reliable 

performance. In the method of feature extraction, models like CNN 

and HLF-DIP can automatically detect important image details, 

though they can be hard to interpret and sometimes complex to 

use. In the classification method, Residual Networks and CNN-LSTM 

are the approaches, which are effective at accurately identifying 

image categories; however, they require enormous computing 

power and can be difficult to fully understand. This review gives a 

clear overview of the advantages and disadvantages of different 

methods, which can help people choose the best approach for 

real-world use. As image processing continues to develop, solving 

problems like high computing needs and ensuring reliable 

performance will be important to make these techniques work at 

their best. 
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INTRODUCTION 

Image processing is a vast field that employs different methods to get useful 

information from an image. At a similar point, Artificial Intelligence (A_I) has become 

a large area of study that focuses on making machines that think and act like humans. 

Machine Learning (M_L) is a small part of A_I. This one can allow a computer to learn 

from data and make decisions on its own without taking help from humans. M_L 

reduces the need for humans to make decisions. At the core of M_L, deep learning 

(D_L) is a branch that goes beyond traditional methods, especially when working with 
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unstructured data such as images, text, or audio. Even a D_L can achieve an 

accuracy of such a level that humans cannot.  Its success depends upon that it has 

a greater quantity of data to train a complex neural network, which is made up of 

many layers. Unlike older models, D_L systems can automatically identify and extract 

crucial perspectives from information without needing humans to manually define 

them. Such a type of ability also comes from its layered structure. D_L is inspired by the 

process of coping, that how the human brain can think and learn. It aims to develop 

learning algorithms that closely replicate the brain’s complex processes. In this paper, 

different deep learning methods proposed by various researchers are explained and 

discussed in relation to their use in Image Processing (IP) techniques.  

Such a detailed collection explores the huge and complex field of IP. These are image 

restoration, feature extraction, segmentation, enhancement, and classification. All of 

them are important in handling and improving visual data, which helps us to 

understand the image better and use images in many different applications. The most 

important step in it is image restoration methods, which help in fixing damaged or 

unclear images. The techniques, like removing noise, correcting blurriness, and filling 

in missing parts, aim to undo the effects of distortion and other image problems. They 

create a solid base for further analysis and interpretation by improving the image’s 

clarity and accuracy, which is important in areas like medical imaging, security, etc. 

The orbit is used for image enhancement, which can improve the quality of an image. 

This task can be processed to adjust contrast, brightness, sharpness, etc. This can 

make the image easier to see and understand. Image enhancement is used in many 

different fields, which can lead to better analysis and more accurate decision-

making.  

This study includes image segmentation, in which images are divided into many parts. 

Methods like clustering and semantic segmentation help to identify the objects within 

the image. Image segmentation is especially crucial for the detection of objects, 

tracking, and understanding scenes, which can provide the foundation for accurate 

recognition and analysis. The most essential part of an image analysis is extraction, 

which can improve the characteristics of the image for further study. Traditional 

methods face the trouble, while in deep learning, it can automatically identify the 

complex features. This ability improved the image and helps with better analyses. 

Image classification is also an important task in visual data analysis. In which we give 

images labels based on what they show. Most of the time, this is used for the 

recognition of objects and medical diagnosis. Both M_L and D_L methods are used to 

automatically and accurately sort images into categories and helping to make 

decisions more quickly and effectively. 

Section 1 explains the basic ideas and operations of image processing. Section 2 gives 

a detailed overview of the assessment methods employed to gauge the performance 

of distinct image processing techniques. Section 3 explores various Deep Learning 

(D_L) techniques that are particularly designed for the tasks of image preprocessing. 

Section 4 focuses on D_L models employed for the segmentation of images, 

explaining their methods and applications. In Section 5, the paper discusses D_L 

techniques for feature extraction, highlighting their importance and efficacy. Section 

6 examines D_L models used for image classification, describing their structure and 

performance. Section 7 discusses the importance of each model, and Section 8 

concludes the paper by summarizing the key outcomes and main insights from the 

study. The research reviewed in this paper covers a wide range of D_L techniques 

applied to different areas, including medical images, satellite images, images of fruit 
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and plant (flower), and even image analysis in real-time. Each area has its own 

challenges, which are addressed with specific D_L methods, showing how flexible and 

powerful deep learning can be across many real-world applications. 

Image processing operations metrics 

Metrics of evaluation play a critical role in measuring the effectiveness and 

performance of various image-processing techniques. They provide quantitative 

indicators that enable researchers and practitioners to conduct objective analyses 

and make meaningful comparisons across different approaches. Through the 

application of these parameters, the often complex and subjective nature of image 

processing becomes highly transparent and data-driven, supporting informed 

decision-making and fostering continuous progress in the field. 

Table A summarizes commonly used metrics for evaluating image preprocessing, 

segmentation, and classification tasks. The evaluation of image processing, 

segmentation, and classification tasks relies on a variety of quantitative metrics 

designed to assess performance across different dimensions of accuracy, similarity, 

and perceptual quality. In image preprocessing, metrics such as Average Squared 

Deviation (ASD) and Average Absolute Deviation (AAD) measure the discrepancy 

between the original-images and processed-images. ASD calculates the mean 

squared difference between the original-images and denoised-images, penalizing 

larger errors more heavily, whereas AAD (equivalent to Mean Absolute Error) assesses 

the average tendency of errors without considering their path, providing a 

complementary perspective on image restoration accuracy. Maximum Signal-to-

Noise Ratio (MSNR) quantifies restoration quality by comparing the optimal 

approximate pixel value to the measured noise, offering insight into the overall signal 

fidelity. To capture perceptual and structural fidelity, the Structural Similarity Measure 

(SSM) evaluates images based on luminance, contrast, and structural consistency, 

while the Average Structural Similarity Index (ASSI) extends this evaluation across 

multiple image patches to provide an aggregate assessment. Additionally, 

perceptual quality is further assessed using Image Naturalness Index (NIQE), which 

measures deviations in luminance and contrast statistics relative to natural images, 

and Inception Feature Divergence (FID), which quantifies the distributional distance 

between real and generated images using feature embeddings from pretrained 

networks. 

In image segmentation, metrics focus on evaluating the spatial accuracy of 

predicted regions relative to ground truth annotations. Overlap Ratio Metric (ORM), 

also refer as Intersection over Union, assesses the percentage of correctly predicted 

pixels relative to the union of predicted and true regions. Mean Precision Score (AP) 

measures detection performance across multiple recall levels through the calculation 

of the area under the curve of precision-recall. Complementing these, the Dice 

Overlap Index (DSC) evaluates the similarity between predicted and ground truth 

masks, particularly useful in applications with class imbalance such as medical image 

segmentation. Mean Accuracy (AA) calculates the correctly classified pixels’ ratio 

(both negative and positive) across all images, providing a general measure of 

segmentation performance. 

For feature extraction and classification tasks, traditional metrics, i.e., Precision, 

Accuracy, Recall (Sensitivity), and F-Measure (F1-Score) are widely applied. Accuracy 

refers to the overall ratio of correctly predicted instances, though it may be less 

informative in imbalanced-datasets. Precision measures the capability of the method 
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to eliminate false positives, while Recall captures the model’s ability to correctly 

identify true positives. F-Measure combines both Recall and Precision employing the 

mean of harmonic to present a balanced evaluation of model performance. 

Specificity (True Negative Rate) corroborates these metrics by quantifying the ratio of 

correctly identified negatives. Finally, the ROC Curves and their corresponding Area 

Under the Curve (AUC) visually and quantitatively represent the mutual exclusivity 

among true-positive and false-positive rates, offering a detailed measure of classifier 

performance across varying decision thresholds. 

Collectively, these parameters provide a rigorous mechanism for assessing the 

effectiveness of image processing, segmentation, and classification models, 

balancing considerations of structural fidelity, perceptual quality, and predictive 

accuracy. 

Image pre-processing 

The image pre-processing represents a primary stage in the image processing field, 

comprising a sequence of operations designed to prepare raw/unprocessed images 

for subsequent processing, including analysis, interpretation, and manipulation. Such 

a crucial phase enhances the images’ overall quality by reducing noise, correcting 

distortions, and emphasizing related features. Through these improvements, image 

preprocessing contributes to highly reliable and accurate outcomes in advanced 

tasks, i.e., image recognition, classification, and analysis. 

In general, image-pre-processing models can be classified into two primary types: 

image restoration. These types fundamentally focus on eliminating noise and blurring 

to recover the original image quality, and image enhancement, which aims to 

improve visual attributes such as contrast, brightness, and detail to facilitate better 

interpretation and analysis. 

Image restoration 

The image restoration is a critical process dedicated to recovering the images’ 

original integrity and visual quality that have suffered distortion/degradation. The 

fundamental objective of it is to reconstruct an image that is in degraded form into a 

clearer and highly faithful representation, ultimately unveiling information that could 

have been lost or obscured. The process of image restoration is primarily significant in 

situations where the quality of the image is compromised because of the factors, i.e., 

sensor imperfections during image acquisition, compression artifacts, or transmission 

errors. By addressing these degradations, image restoration improves both the 

interpretability and practical utility of visual information in various analytical and 

diagnostic applications. 

One of the major challenges in achieving high-quality images is the presence of noise, 

an undesirable random variation in the intensity of a pixel that introduces visual 

artifacts and could obscure critical image information. In addition, noise of distinct 

types can influence the quality of an image, including Gaussian noise, known by its 

random statistical distribution; salt-and-pepper noise, which manifests as sporadic 

bright and dark pixels; and speckle noise, typically arising from interference patterns. 

Such distortions commonly originate during the image acquisition phase or because 

of subsequent processing and transmission operations. Effectively mitigating noise is 

therefore essential to preserve image fidelity and ensure the accuracy of subsequent 

analytical tasks. 
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Table A: Summary of Common Metrics for Image Preprocessing, Segmentation, and Classification 

Category Metric Formula / Expression Description 

Image 

Preprocessing 

Metrics 

Average 

Squared 

Deviation (ASD) 

𝐴𝑆𝐷 =  
1

𝐻 ∗ 𝐾
∗ ∑ ∑(𝑋𝑖,𝑗

^ − 𝑋𝑖,𝑗)2

𝐻

𝑗=1

𝐾

𝑙=1

 
Measures the average squared difference between the 

original 𝑋 and denoised images 𝑋^; penalizes large errors 

more heavily. 

 
Maximum 

Signal-to-Noise 

Ratio (MSNR) 

𝑀_𝑆_𝑁_𝑅 =  10 ∗ 𝑙𝑜𝑔10(
𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑛𝑜𝑖𝑠𝑒
) 

Quantifies image restoration quality by comparing the 

maximum possible pixel value to the ASD. 

 
Structural 

Similarity 

Measure (SSM) 

𝑆𝑆𝑀(𝑥,𝑦)  = [
2𝜇𝑥𝜇𝑦

+ 𝐶1

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝐶1)
] ∗ [

2𝜑𝑥𝑦 + 𝐶2

𝜑𝑥
2 + 𝜑𝑦

2 + 𝐶2

]  
Evaluates similarity between original and denoised images 

based on luminance, contrast, and structure. 

 

Average 

Structural 

Similarity Index 

(ASSI) 

𝐴𝑆𝑆𝐼 (𝑥, 𝑦)  = 1
𝑁⁄ [ 𝐴𝑆𝑆𝐼(𝑥1, 𝑦1) + ⋯ …

+ 𝐴𝑆𝑆𝐼(𝑥𝑁, 𝑦𝑁)] 

Averages ASSI across image patches to measure overall 

structural similarity. 

 
Average 

Absolute 

Deviation (AAD) 

𝐴𝐴𝐷

=
|𝑦1

𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑦1
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

| + ⋯ … + |𝑦𝑛
𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑦𝑛

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
|

𝑛
 

The Mean Absolute Error measures the average magnitude of 

errors between actual and predicted values, without 

considering their direction. Lower AAD indicates better 

accuracy, and unlike ASD, it does not heavily penalize larger 

errors. 

 
Image 

Naturalness 

Index 

 Assesses image naturalness based on deviation of luminance 

and contrast statistics from natural images. 

 
Inception 

Feature 

Divergence 

 
Measures distributional distance between real and 

generated images using feature embeddings from a pre-

trained network. 

Image 

Segmentation 

Metrics 

Overlap Ratio 

Metric 

𝑂𝑅𝑀

=
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

Evaluates overlap between predicted and ground truth 

regions; widely used in object detection and segmentation. 

 Mean Precision 

Score 
 Calculates the area under the precision-recall curve across 

multiple recall levels to assess detection performance. 

 Dice Overlap 

Index 
𝐷𝑖𝑐𝑒 =

2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

The Dice Coefficient measures the overlap between 

predicted and ground truth masks. Dice = 1 → perfect match 

Dice = 0 → no overlap. It is widely used in medical image 

segmentation, computer vision, and object detection, 

especially when class imbalance exists. 
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Category Metric Formula / Expression Description 

 Mean  

Accuracy (AA) 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Overall Accuracy (AA) measures the proportion of correctly 

classified pixels (both positive and negative) across all images 

or regions. 

AA = 1 (100%) → all pixels correctly classified 

AA = 0 → all pixels misclassified 

It is commonly used in image segmentation, classification, and 

remote sensing tasks. 

Feature Extraction 

and Classification 

Metrics 

Accuracy 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Accuracy measures the proportion of correctly predicted 

instances out of all predictions. Accuracy = 1 (100%) → all 

predictions are correct. Accuracy = 0 → all predictions are 

incorrect is widely used in classification, segmentation, and 

prediction tasks, though it may be misleading for imbalanced 

datasets. 

 Precision Precision =
Correct Positive Predictions

𝐴𝑙𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 Measures the model’s ability to avoid false positives. 

 Recall 

(Sensitivity) 
Recall (Sensitivity) =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Measures the model’s ability to correctly identify positive 

samples. 

 F-Measure 

F − M

= 2 ∗
Correct Positive Predictions

𝐴𝑙𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐴𝑙𝑙 𝐴𝑐𝑡𝑢𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

Harmonic mean of precision and recall; balances false 

positives and false negatives. 

 Specificity (True 

Negative Rate) 
Specificity =

𝐶orrect Negative Predictions

𝐴𝑙𝑙 𝐴𝑐𝑡𝑢𝑎𝑙 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

Proportion of correctly identified negatives among all actual 

negatives. 

 ROC Curve / 

AUC 
 Graphically represents trade-off between true positive and 

false positive rates; AUC quantifies overall performance. 

Notice: TP (True Positive) = correctly predicted pixels, FP (False Positive) = wrongly predicted pixels, FN (False Negative) = missed pixels 
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Historically, traditional image restoration has employed a wide range of techniques 

to reduce the adverse influences of image degradation and noise. These include 

constrained least squares filters, blind deconvolution models designed to reverse 

blurring impacts, and Wiener and inverse filters that enhance the signal-to-noise ratio. 

Furthermore, alpha-trimmed mean, order statistic, and adaptive mean filters adapt 

their strategies of filtering based on local pixel intensity distributions to achieve more 

context-sensitive restoration. In addition, deblurring algorithms are utilized to 

counteract motion- or optics-induced blurriness, thereby restoring image sharpness 

and definition. Denoising methods (Peng et al., 2020; Tian et al., 2020; Tian et al., 

2019)—Non-Local Means and Total Variation Denoising, further enhance image 

quality by efficiently suppressing random noise while preserving key structural 

information. In sum, these traditional approaches have significantly advanced the 

field’s ability to restore the integrity and visual clarity of the image. Table 1 provides a 

comparative analysis of contemporary D_L techniques for restoration of image, 

highlighting their key positive aspects and limitations. 

The progress in D_L in recent years, specifically with the emergence of Convolutional 

Neural Networks (CNNs) has transformed the landscape of image restoration. CNNs 

possess a remarkable ability to learn and extract intricate key aspects from images, 

enabling them to identify subtle patterns and relationships that are often difficult for 

traditional algorithms to capture. By leveraging large-scale training datasets, these 

models can produce substantially improved restoration outcomes, frequently 

outperforming conventional approaches. This advancement stems from CNNs’ 

inherent capacity to model the underlying frameworks of images and to 

autonomously infer the most effective strategies of restoration. 

Tian et al. (2020) presented a comprehensive review of the application of deep neural 

networks in image denoising, particularly focusing on the removal of Gaussian noise. 

Their study examined a range of D_L techniques addressing different denoising 

challenges—additive white noise, blind denoising, and images of real-world noise. By 

conducting analyses on benchmark datasets, they evaluated the performance, 

computational efficiency, and visual quality of different network architectures, and 

provided cross-comparisons among various denoising methods across multiple noise 

types. The authors concluded by highlighting the key challenges and limitations that 

D_L approaches still face in achieving optimal image denoising. Similarly, Quan et al. 

(2020) proposed a self-supervised D_L framework known as Self2Self for denoising of 

images. Their research revealed that neural networks trained under the Self2Self 

paradigm achieved superior results compared to both traditional single-image 

learning-based and non-learning-based denoising methods, demonstrating the 

effectiveness of self-supervision in enhancing denoising performance without 

requiring clean reference images. 

Yan et al. (2020) introduced an innovative model for mitigating speckle noise in digital 

holographic speckle pattern interferometry (DHSPI) wrapped phase images. Such a 

technique utilizes enhanced Denoising Convolutional Neural Networks (DnCNNs) to 

effectively suppress noise, with performance evaluated through Mean Squared Error 

(MSE) comparisons across noisy and denoised information, demonstrating significant 

improvements in image clarity and precision. Sori et al. (2020) developed a two-path 

Convolutional Neural Network (CNN) framework for lung cancer detection using 

denoised Computed Tomography (CT) images. The denoised images, processed 

through DR-Net, were used as inputs for classification, yielding superior performance 

in terms of sensitivity, accuracy, and specificity compared to contemporary models. 
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Similarly, Pang et al. (2021) proposed an unsupervised D_L strategy for denoising of an 

image based on unmatched noisy image pairs. By employing, a loss function 

analogous to supervised learning, their technique, built upon the Additive White 

Gaussian Noise (AWGN) framework, achieved competitive results when compared 

with other state-of-the-art unsupervised denoising models. 

Previous literature, Hasti and Shin (2022) documents a D_L-based denoising model for 

fuel spray images captured through Mie scattering and droplet center detection. 

Their comparative analysis among multiple architectures, including a standard CNN, 

a modified ResNet, and a modified U-Net, show that the modified U-Net achieved the 

best performance, as evidenced by lower Mean Squared Error (MSE) and higher Peak 

Signal-to-Noise Ratio (PSNR) values. Niresi and Chi (2022) proposed an unsupervised 

hyperspectral image (HSI) denoising algorithm grounded in the Deep Image Prior 

(DIP) framework. Their approach minimized the Half-Quadratic Lagrange Function 

(HLF) without relying on explicit regularizers, efficiently eliminating multiple types of 

noise, including Gaussian and sparse noise, while maintaining edge integrity and 

structural details. Similarly, (Zhou et al., 2022) developed a deep network-based 

sparse denoising (DNSD) model for bearing fault diagnosis. Their method addressed 

the limitations of traditional sparse theory algorithms by enhancing generalization 

capability, reducing dependency on parameter tuning, and mitigating data-driven 

complexity. 

Tawfik et al. (2022) demonstrated that an extensive comparative analysis of image 

denoising methodologies, classifying them into traditional non-learnable filtering 

techniques and D_L-based frameworks. Their study introduced semi-supervised 

denoising techniques and utilized both quantitative and qualitative metrics to 

evaluate and contrast denoising performance across methods. In a related 

contribution, (Meng & Zhang, 2022) presented a denoising gray image approach 

leveraging a symmetric and dilated convolutional residual network. Their model 

demonstrated outstanding performance in high-noise conditions, achieving superior 

results in terms of Structural Similarity Index Measure (SSIM), Peak Signal-to-Noise Ratio 

(PSNR), and Figure of Merit (FOM), while also enhancing the visual fidelity of images, 

benefiting downstream applications such as target detection, recognition, and 

tracking. Overall, image restoration remains an evolving field dedicated to recovering 

and enhancing the visual image quality degraded by noise and distortion. With 

ongoing technological progress, the integration of advanced D_L architectures 

continues to redefine the benchmarks of image clarity, accuracy, and computational 

efficiency, marking a significant step toward more intelligent and adaptive image 

restoration solutions. 

Image enhancement 

The enhancement of the image is the process of modifying an image to enhance its 

quality of visual quality, interpretability, and overall perceptual appeal. This process 

involves a variety of transformations designed to show obscured information, 

strengthen contrast, and sharpen structural edges, thereby producing a clearer and 

highly informative image suitable for analysis, visualization, or presentation. The 

primary objective of image enhancement is to make significant features within an 

image highly distinguishable by optimizing attributes such as brightness, contrast, color 

balance, and texture definition. Conventional image enhancement techniques 

encompass several established methods, including histogram matching to adjust pixel 
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intensity distributions, contrast-limited adaptive histogram equalization (CLAHE) to 

improve local contrast, and denoising filters such as the Wiener and median filters to 

suppress noise. Additionally, linear contrast stretching and unsharp masking are 

frequently employed to increase image sharpness and visual clarity. 

Recently, D_L-based approaches have emerged as a key tool for the enhancement 

of images. These models, powered by large-scale datasets and advanced neural 

architectures, are capable of autonomously learning intricate features and image 

structures, allowing them to perform enhancement objectives with remarkable 

precision and generalization. Various deep learning frameworks have been 

developed, each offering unique advantages and presenting specific trade-offs, as 

summarized in Table 2 of this study. Notable advancements include the inclusion of 

Retinex theory and deep image priors within the Novel RetinexDIP model, which 

effectively balances illumination and reflectance components. Other innovations, 

such as robustness-enhancing fuzzy operations, address overfitting issues, while hybrid 

models that fuse classical enhancement techniques such as Unsharp Masking, High-

Frequency Emphasis Filtering, and CLAHE with modern architectures like EfficientNet-

B4, ResNet-50, and ResNet-18, demonstrate improved generalization and robustness.  

The FCNN Mean Filter offers high computational efficiency, and CV-CNN exploits 

complex-valued convolutions to better represent phase and amplitude information. 

Frameworks such as pix2pixHD and LE-Net (Light Enhancement Net) exhibit rapid 

convergence and efficient performance, while Deep Convolutional Neural Networks 

(DCNNs) continue to deliver powerful enhancement capabilities, albeit with sensitivity 

to hyperactive parameter tuning. Moreover, the MSSNet-WS (Multi-Scale Stage 

Network) architecture achieves effective convergence while mitigating overfitting. 

Overall, this comparative analysis underscores the diverse merits of emerging deep 

learning-based image enhancement techniques, highlighting their advancements in 

convergence speed, robustness, overfitting mitigation, and computational efficiency, 

thereby marking a significant evolution from traditional enhancement paradigms. 

Gao et al. (2022) introduced an innovative method for low-light image enhancement 

that integrates Retinex decomposition following an initial denoising stage. Their 

approach utilizes the Retinex model to effectively restore image brightness and 

contrast, thereby producing outputs with improved clarity, detail visibility, and 

perceptual quality. The proposed framework was comprehensively evaluated against 

several benchmark techniques, including LIME, NPE, SRIE, KinD, Zero-DCE, and 

RetinexDIP across multiple performance metrics (Tables 1–5). Experimental results 

demonstrated that (Gao et al., 2022) method not only achieved superior 

enhancement in visual quality but also maintained high image resolution and 

optimized memory efficiency, highlighting its effectiveness and practicality for real-

world low-light image restoration applications. Liu et al. (2020) investigated the role of 

D_L in iris recognition by means of the implementation of Fuzzy Convolutional Neural 

Networks (F-CNN) and Fuzzy Capsule Networks (F-Capsule). Their approach is 

distinguished by the integration of Gaussian and triangular fuzzy filters, a new 

enhancement mechanism that significantly improves the clarity and feature 

extraction of iris images. A key strength of their framework lies in its seamless 

compatibility with existing neural architectures, providing a practical and efficient 

enhancement to conventional iris recognition systems. Muchtar et al. (2020)  

combined D_L with models of image enhancement to address the challenge of 

tuberculosis (TB) image classification. Their hybrid method employed Unsharp Masking 

(UM) and High-Frequency Emphasis Filtering (HEF) alongside state-of-the-art 
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architectures, namely EfficientNet-B4, ResNet-50, and ResNet-18. By systematically 

assessing the performance of multiple enhancement algorithms, their study achieved 

high accuracy and Area Under the Curve (AUC) scores, underscoring the efficacy of 

integrating enhancement preprocessing with deep learning for precise and reliable 

TB diagnosis.   

Wang et al. (2021) proposed a new application of D_L to mitigate impulse noise in 

degraded images with varying noise intensities. Their method introduced a Fully 

Connected Neural Network (FCNN) mean filter, which demonstrated superior 

performance compared to conventional mean and median filters, particularly under 

low-noise conditions. This contribution highlights the adaptability and efficacy of D_L 

frameworks in image denoising and noise suppression contexts.  Furthermore, Quan et 

al. (2020) developed a non-blind image deburring model utilizing a Complex-Valued 

Convolutional Neural Network (CV-CNN). Their model uniquely incorporates Gabor-

domain denoising as a prior step within the deconvolution process, allowing the 

network to better capture frequency-domain characteristics of blurred images. 

Quantitative assessments based on Peak Signal-to-Noise Ratio (PSNR) and Structural 

Similarity Index (SSIM) confirmed the model’s superior deblurring performance, 

emphasizing the potential of complex-valued CNNs as powerful tools for advanced 

image restoration tasks. 

Dan Zheng et al. (2021) utilized the pix2pixHD D_L framework to improve multidetector 

computed tomography (MDCT) images, focusing specifically on the precise 

measurement of vertebral bone structures. They documented that the capability of 

D_L models to substantially enhance the interpretability and quality of complex 

medical images, thereby supporting highly reliable and accurate clinical assessments.  

Similarly, Guofa Yang et al. (2021) proposed a CNN-based architecture, LE-Net, 

designed for image recovery under low-light conditions, with applications in driver 

assistance systems and connected autonomous vehicles (CAVs). Their findings 

revealed that the proposed model outperformed both traditional enhancement 

methods and several existing D_L models, emphasizing the effectiveness of 

developing context-specific enhancement solutions tailored to real-world 

operational environments. 

Mehranian et al. (2022) explored the enhancement of Time-of-Flight (ToF) information 

in positron emission tomography (PET) imaging using deep convolutional neural 

networks. By integrating the block-sequential regularized expectation  maximization 

(BSREM) reconstruction algorithm with their D_L-ToF(M) model, they achieved superior 

diagnostic performance, validated through key evaluation parameters, i.e., the 

Fréchet Inception Distance (FID) and Structural Similarity Index (SSIM). This study 

highlighted the potential of D_L to enhance diagnostic precision and image fidelity in 

advanced medical imaging modalities. In another significant contribution, Kim et al. 

(2023) introduced the Multi-Scale-Stage Network (MSSNet),  a novel D_L architecture 

for single-image deblurring. Building upon a critical review of existing coarse-to-fine 

approaches, their method achieved state-of-the-art performance across multiple 

dimensions, including image quality, model efficiency, and computational speed, 

setting a new benchmark for deep learning-based deblurring techniques. Overall, 

image enhancement remains a cornerstone of modern image processing, serving to 

elevate visual quality for both human interpretation and automated analytical 

applications. The integration of traditional image processing models with cutting-
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edge D_L frameworks continues to push the boundaries of what is achievable in terms 

of image clarity, detail recovery, and computational efficiency.  

Collectively, these studies illustrate the transformative potential of D_L across diverse 

domains  from medical imaging to low-light scene enhancement  while simultaneously 

addressing critical complexities such as generalization, computational constraints, 

and detail preservation. Nevertheless, the research also acknowledges key limitations, 

including restricted adaptability across heterogeneous datasets, potential loss of fine 

structural details, and the complexities introduced by real-world image variability. By 

critically analyzing both the strengths and shortcomings of these approaches, this 

body of work contributes to a more comprehensive understanding of the evolving 

landscape of image enhancement, underscoring the importance of continued 

innovation and refinement in this rapidly advancing field. 

Image segmentation 

The segmentation of an image is a primary process in computer vision that involves 

partitioning an image into distinct and meaningful regions on the basis of visual 

attributes such as intensity, color, texture, or spatial proximity. This process enables the 

extraction of relevant structures or objects from complex visual data. Broadly, image 

segmentation is categorized into two primary types: instance segmentation and 

semantic segmentation. While semantic segmentation assigns every pixel in an image 

to a specific class, thereby delineating regions corresponding to different objects or 

materials, instance segmentation extends this capability by distinguishing individual 

occurrences of objects within the same category, offering a finer level of granularity. 

Traditional segmentation techniques, which preceded the advent of D_L, relied 

heavily on handcrafted features and domain-specific expertise. These methods 

typically divide images into well-defined segments based on manually established 

rules or statistical properties. Common examples include thresholding, which 

separates object and background regions employing intensity thresholds; region-

based segmentation, which groups pixels with identical characteristics into cohesive 

areas; and edge detection, which identifies boundaries by detecting abrupt intensity 

changes. Although these conventional approaches have been instrumental in early 

image analysis, they exhibit significant limitations in handling complex geometries, 

noisy information, and dynamic or cluttered backgrounds. Furthermore, the manual 

design of features for diverse contexts is both time-consuming and lacks 

generalizability across varying image domains. 

The rise of deep learning has revolutionized image segmentation, marking a profound 

shift from manual feature design to automated feature learning. Deep neural 

networks, particularly convolutional architectures, are able of learning rich, 

hierarchical representations directly from the information of raw images. This 

capability enables them to capture subtle spatial dependencies and adapt 

effectively to diverse visual environments. Consequently, deep learning-based 

segmentation methods not only eliminate the traditional algorithms’ limitations but 

also achieve superior accuracy, robustness, and scalability. 

This paradigm shift has significantly expanded the frontiers of image analysis and 

computer vision, paving the way for advanced applications in fields i.e., medical 

imaging, autonomous systems, remote sensing, and industrial inspection. Table 3 

displays a detailed overview of the strengths and limitations of the D_L models 

explored in this study, illustrating how modern segmentation architectures continue to 
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refine precision, adaptability, and computational efficiency across diverse imaging 

contexts. 

Ahmad. et al. (2020) conducted an extensive study on D_L-based semantic 

segmentation techniques aimed at addressing the complex challenge of top-view 

multiple-person segmentation. Their research evaluated the performance of several 

prominent architectures—the Fully Convolutional Network (FCN), U-Net, and 

DeepLabV3. This line of inquiry holds substantial practical importance, as precise 

segmentation of individuals in top-view imagery is essential for applications such as 

video surveillance, crowd management, and human-computer interaction systems. 

The comparative analysis revealed that DeepLabV3 and U-Net consistently 

outperformed FCN in terms of segmentation accuracy. Both models achieved 

notably high accuracy and mean Intersection over Union (mIoU) scores, reflecting 

their superior ability to delineate and classify multiple individuals within complex visual 

scenes. The findings highlight the effectiveness of advanced convolutional 

architectures in capturing spatial and contextual information, ultimately enabling 

more precise and reliable segmentation outcomes. Overall, the study emphasizes the 

pivotal role of state-of-the-art deep learning frameworks in enhancing the robustness 

and precision of semantic segmentation, particularly in scenarios involving multiple 

overlapping or interacting subjects. 

Dongyang Su et al. (2020) introduced an adaptive segmentation algorithm based on 

the U-Net architecture, capable of effectively capturing both shallow and deep 

image features. They specifically avoid the complexity of segmenting complex 

boundaries, broader computer vision applications, and a critical task in medical 

imaging. The model was validated on both liver cancer CT scans and natural scene 

images, demonstrating clear advantages over conventional segmentation models. 

The study highlights the potential of adaptive U-Net-based algorithms for accurately 

handling intricate structures across diverse image datasets. 

Ahammad et al. (2020) developed a novel D_L mechanism utilizing Convolutional 

Neural Networks (CNNs) for the segmentation and diagnosis of Spinal Cord Injury (SCI) 

features. This framework is particularly significant for medical imaging applications, 

where accurate identification of spinal cord abnormalities is crucial. The proposed 

model exhibited greater computational effectiveness and remarkable precision, 

underscoring its potential for clinical implementation. By leveraging sensor-based SCI 

image data, the study affirms the capacity of D_L to enhance diagnostic accuracy 

and support informed patient care decisions. Lorenzoni et al. (2020) applied CNN-

based D_L models to automate the segmentation of microCT images of cement-

based composites, a task of great relevance in materials science and civil 

engineering. Their research highlights the adaptability of D_L techniques, 

demonstrating that network parameters optimized for high-strength materials can be 

effectively transferred to other related contexts. The study highlights the utility of CNNs 

in advancing automated material characterization and analysis. 

Mahajan et al. (2021) proposed a clustering-based profound iterative D_L techniques 

(CPIDM) for hyperspectral segmentation of images, addressing the specific 

challenges posed by hyperspectral data in fields such as environmental monitoring 

and remote sensing. The proposed method outperformed state-of-the-art 

approaches, demonstrating superior segmentation accuracy and robustness. This 

study contributes a novel methodology for effectively handling the high 
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dimensionality and spectral complexity inherent in hyperspectral images, providing a 

valuable tool for enhanced geospatial and environmental analysis. 

Jalali et al. (2021) developed an advanced D_L-based framework for lung region 

segmentation from CT images, utilizing a Bi-directional ConvLSTM U-Net with densely 

connected convolutions (BCDU-Net). This approach is particularly significant for 

medical imaging and lung-related diagnostic applications. The model demonstrated 

high accuracy across a large dataset, highlighting its potential to assist radiologists in 

precisely delineating lung regions. The study exemplifies the transformative impact of 

sophisticated deep learning architectures in enhancing diagnostic precision within 

healthcare. 

Bouteldja et al. (2021) proposed a CNN-based method for multiclass segmentation of 

stained kidney images across multiple species and renal disease models. This work is 

particularly relevant to histopathological analysis and disease diagnosis, as it enables 

accurate identification of diverse structural and pathological features. The method’s 

robust performance across different species and disease conditions underscores its 

reliability and utility in supporting pathologists for precise, image-based diagnostic 

assessments. 

Liu et al. (2021) introduced a novel CNN architecture featuring cross-connected layers 

and multi-scale feature aggregation to enhance image segmentation capabilities. 

This approach eliminates the growing need for advanced segmentation approaches 

capable of capturing intricate image features and spatial nexus. The technique 

achieved notable performance metrics, demonstrating its potential to improve 

segmentation precision in a variety of applications—medical imaging, autonomous 

framework, and robotics. 

Saood and Hatem (2021) applied D_L networks, specifically SegNet and U-Net, to 

segment COVID-19-infected regions in CT scans. This timely research contributes to 

global efforts against the pandemic by providing accurate and automated 

identification of infected lung areas. Their comparative analysis of network 

performance offers valuable insights into the relative effectiveness of distinct D_L 

architectures, highlighting the agility and practical applicability of these methods in 

responding to urgent real-world challenges in medical imaging. Siti Rachmatullah et 

al. (2020) introduced a Mask R-CNN-based framework for the precise detection of 

fetal septal defects, addressing the limitations of prior approaches. Their model 

demonstrated accurate multiclass heart chamber segmentation, achieving 

remarkable performance: right atrium (97.59%), left atrium (99.67%), left ventricle 

(86.17%), right ventricle (98.83%), and aorta (99.97%). In terms of defect detection 

within atria and ventricles, Mask R-CNN (MRCNN) achieved a mean Average 

Precision (mAP) of 99.48%, significantly outperforming Faster R-CNN (FRCNN) at 82%. 

The outcomes outline the potential of the proposed approach to assist cardiologists 

in the early screening of fetal congenital heart disease. Park et al. (2021) proposed a 

deep learning approach for intelligent food segmentation in images, leveraging Mask 

R-CNN. To overcome the challenges of labor-intensive data collection, the authors 

utilized synthetic datasets generated via 3D graphics software (Blender) for model 

training.  

The approach achieved 52.2% accuracy on real-world food instances using only 

synthetic information and demonstrated an additional 6.4 percentage point 

enhancement after fine-tuning, compared to training from scratch. This methodology 
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presents strong potential for applications in healthcare robotics, such as automated 

meal assistance systems. Pérez-Borrero et al. (2020) emphasized the importance of 

fruit instance segmentation in the context of autonomous fruit-picking systems, 

positioning Mask R-CNN as a benchmark model. Their study proposed methodological 

modifications to enhance efficiency and introduced the Instance Intersection over 

Union (I2oU) metric alongside the creation of the StrawDI_Db1 dataset, providing 

practical contributions for real-world deployment. Collectively, prior research 

underscores the transformative effect of D_L-based segmentation across diverse 

domains, including medical imaging, agriculture, and robotics. By leveraging 

advanced network architectures and innovative training strategies, these 

approaches push the boundaries of image segmentation, enhancing accuracy, 

efficiency, and applicability across complex real-world scenarios. 

Feature extraction 

The feature extraction is a critical process in computer vision and image processing, 

involving the transformation of raw pixel data into a highly compact and informative 

representation, commonly referred to as features. Such aspects capture essential 

attributes of an image, facilitating tasks, i.e., object recognition, image segmentation, 

and classification, by enabling algorithms to more effectively interpret and analyze 

visual information. 

Before the adoption of D_L, traditional feature extraction approaches dominated the 

field. These approaches primarily focused on analyzing pixel-level information and 

transforming it into meaningful representations. Key techniques include: 

• Principal Component Analysis (PCA): A statistical method that mitigates the 

dimensionality of image details while retaining as much of the original variance as 

possible. PCA identifies principal components or orthogonal axes, along which the 

information exhibits the greatest variation, allowing for more efficient representation 

and analysis. 

• Independent Component Analysis (ICA): This technique seeks a linear 

transformation of the information into statistically independent features. ICA is 

particularly useful for separating mixed sources in images, i.e, isolating different 

overlapping image signals from a single composite image. 

• Locally Linear Embedding (LLE): A nonlinear dimensionality reduction 

approach that preserves the local structure of data points. LLE generates a low-

dimensional representation of the information while maintaining neighborhood nexus, 

enabling the capture of subtle, intrinsic patterns within complex datasets. 

Overall, these traditional methods laid the groundwork for understanding and 

representing image data, providing the basis upon which modern deep learning-

based feature extraction techniques have built more powerful and automated 

solutions. 

Traditional feature extraction methods have long been employed to provide valuable 

representations and insights for a variety of image analysis tasks. These approaches 

typically rely on handcrafted features, designed based on expert knowledge or 

domain-specific understanding. While effective in certain contexts, this process can 

be labor-intensive and may lack generalizability between distinct datasets or tasks. 

The conventional feature extraction involves transforming raw information into a 

highly compact and informative representation by identifying specific characteristics 
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or attributes that capture essential patterns inherent in the information. The given 

process is often manually guided by domain expertise. For instance, in image 

processing, techniques such as Histogram of Oriented Gradients (HOG) extract 

gradient distribution information, whereas in text analysis, features like word 

frequencies may be chosen to represent meaningful patterns. Despite their usefulness, 

traditional methods have notable limitations. They often require significant expert 

intervention to construct characteristics, which could be time-consuming and may 

fail to capture complex nexus or subtle patterns in the information. Additionally, these 

approaches can struggle with high-dimensional scenarios or datasets where 

meaningful characteristics are not easily defined. 

Contrarily, D_L-based techniques have transformed feature extraction by automating 

the process. A deep neural network can learn hierarchical and discriminative features 

directly from raw information, addressing the requirement for manual feature 

engineering. The given capability allows them to capture complex patterns, 

interactions, and nonlinear correlations that traditional techniques might overlook. As 

a result, D_L has achieved remarkable performance across numerous domains, 

particularly in complex tasks, i.e., speech processing, image recognition, and 

multimodal data analysis. Table 4 provides a concise summary of the parameters, 

strengths, and limitations of various D_L models employed for feature extraction and 

enhancement. 

Magsi et al. (2020) conducted a notable study in the field of agricultural disease 

detection, focusing on identifying diseases in date palm trees using D_L methods. Their 

approach involved extracting color and texture features from images of diseased 

plants and leveraging Convolutional Neural Networks (CNNs) to develop a system 

capable of recognizing disease-specific visual patterns. The model achieved an 

accuracy of 89.4%, demonstrating its effectiveness in precise disease identification. 

Authors outline the potential of D_L for automated crop monitoring, emphasizing its 

role in enhancing disease management, crop health, and agricultural productivity. 

Similarly, Sharma et al. (2020) explored medical imaging applications, specifically 

targeting chest X-ray analysis. The study involved a comprehensive evaluation of 

various CNN architectures to extract relevant features from X-ray images. Importantly, 

the researchers investigated the influence of dataset size on network performance, 

demonstrating the scalability of D_L approaches in medical contexts. By employing 

data augmentation and dropout models, the proposed technique attains a high 

precision of 0.9068, underscoring its capacity to precisely classify and diagnose 

conditions from chest X-rays. The research highlights the significant potential of D_L to 

assist medical professionals in disease diagnosis and decision-making by means of 

automated image analysis. 

Zhang et al. (2020) presented a new approach to distinguishing between counterfeit 

and genuine facial images generated by D_L techniques. Their method utilized a 

Counterfeit Feature Extraction strategy based on a Convolutional Neural Network 

(CNN), attaining an impressive precision of 97.6%. Beyond accuracy, the study 

emphasized computational efficiency, highlighting the potential to reduce 

processing demands in counterfeit image detection. The study is highly relevant in the 

current digital era, where ensuring the images’ authenticity is increasingly critical. 

Simon and V (2020) explored the integration of D_L and feature extraction for the 

classification of images and their texture analysis. Authors employed CNN frameworks, 
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i.e., AlexNet, VGG19, Inception, InceptionResNetV3, ResNet, and DenseNet201 to 

extract meaningful image characteristics, which were subsequently classified 

employing a Support Vector Machine (SVM). The models achieved precise levels 

ranging from 85%-95% across various pretrained architectures and datasets, 

demonstrating the effectiveness of combining D_L-based feature extraction with 

traditional ML for robust image analysis. 

Sungheetha and Sharma (2021) tackled the detection of diabetic conditions by 

identifying specific indicators within retinal blood vessels. Their approach utilized a 

deep feature CNN capable of recognizing subtle pathological patterns, achieving a 

remarkable accuracy of 97%. This study outlines the potential of D_L to enhance 

medical diagnostics by capturing intricate visual patterns indicative of disease, 

thereby supporting early detection and clinical strategic choices. 

Devulapalli et al. (2023) introduced a hybrid feature extraction approach that 

combined Gabor transform-based texture characteristics with high-level automated 

features from the GoogLeNet architecture. Using pretrained models, i.e, AlexNet, 

VGG16, and GoogLeNet, the research achieved superior precision, with the hybrid 

approach outperforming individual pretrained models. This demonstrates the value of 

integrating multiple feature extraction models to enhance performance in complex 

tasks of image analysis. 

Shankar et al. (2022) focused on COVID-19 diagnosis using chest X-ray images through 

a multi-step pipeline. The approach involved preprocessing via Wiener filtering, fusion-

based feature extraction using GLCM, GLRM, and LBP, followed by classification with 

an Artificial Neural Network (ANN). By carefully selecting the best feature subsets, the 

approach achieved robust differentiation across healthy patients and infected 

patients, highlighting the adaptability and utility of D_L frameworks in eliminating 

urgent global health complexities and medical diagnostic tasks. 

Ahmad et al. (2022) document notable advancements in breast cancer detection 

by developing a hybrid D_L approach, AlexNet-GRU, which allows autonomously 

extracting characteristics from the PatchCamelyon benchmark dataset. The method 

exhibited high precision in identifying metastatic cancer within breast tissue and 

outperformed existing state-of-the-art methods. This research underscores the 

transformative potential of D_L in medical imaging, particularly for precise cancer 

classification and detection. 

Sharif et al. (2021) addressed the challenges of detecting gastrointestinal tract (GIT) 

infections employing wireless capsule endoscopy (WCE) images. The proposed model 

combined deep convolutional neural networks (CNNs) with geometric feature 

extraction to tackle the complexities associated with lesion characteristics. By 

integrating contrast-enhanced color features with geometric attributes, the model 

achieved remarkable classification precision and accuracy, demonstrating the 

effectiveness of combining D_L with traditional feature-based techniques. This 

methodology highlights the potential for enhanced medical diagnostics by means of 

the fusion of different data sources. 

Aarthi and Rishma (2023) tackled real-world challenges in waste management by 

introducing a real-time automated waste detection and segregation system using 

Mask R-CNN. Their model successfully identified and classified waste objects in real 

time, while also incorporating geometric feature extraction to facilitate manipulation 
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that is more effective by robotic arms. The given innovative framework not only 

examines environmental issues relevant to waste disposal but also illustrates the 

broader applicability of D_L beyond conventional image analysis, enhancing 

operational efficiency and mitigating environmental risks. Prior research collectively 

outlines the effectiveness of CNNs, hybrid models, and innovative D_L mechanisms in 

achieving high accuracy and enhanced performance across diverse applications, 

including disease detection, image analysis, and counterfeit identification. By 

automating the extraction of meaningful features, these approaches reduce reliance 

on manual feature engineering and improve analytical precision. However, 

challenges such as computational complexity, dataset quality, and real-world 

variability remain critical considerations for practical deployment, necessitating 

careful design and evaluation to ensure robust and reliable performance in real-world 

scenarios. 

Image classification 

The classification of images is a core task in computer vision, involving the assignment 

of images to predefined categories or labels. The objective is to allow machines to 

recognize and differentiate patterns, scenes, or objects within visual data. Prior to the 

rise of D_L, traditional classification models played a central role in data analysis. 

Methods such as Decision Trees, Support Vector Machines (SVM), Naive Bayes, and k-

Nearest Neighbors (k-NN) were commonly employed. In these approaches, experts 

manually designed and selected features that capture relevant details from the 

information. Such features, informed by domain knowledge, aim to highlight 

discriminative characteristics that distinguish between classes. While effective for 

many applications, conventional methods often require labor-intensive feature 

engineering and may struggle to capture distinct patterns or nonlinear nexus inherent 

in large and intricate datasets. Once selected, these features serve as inputs for 

classification algorithms, which assign data points to classes based on predefined 

rules and criteria. Table 5 provides a concise summary of the strengths and limitations 

of various deep learning models applied to image classification. In the medical 

imaging field, Abdelaziz Ismael et al. (2020) proposed a D_L-based approach utilizing 

Residual Networks (ResNets) for brain tumor classification. Their study analyzed a 

benchmark dataset of 3,064 MRI images encompassing three tumor types. The 

proposed model attained an impressive precision of 99%, surpassing prior methods 

and demonstrating the effectiveness of deep architectures in capturing subtle and 

complex tumor patterns. 

In the domain of remote sensing, Xu et al. (2021) examined the integration of 

Recurrent Neural Networks (RNNs) with Random Forests for remote sensing image 

classification. By optimizing cross-validation procedures on the UC Merced dataset 

and performing extensive comparisons with alternative D_L models, their method 

achieved a notable accuracy of 87%, highlighting the applicability of D_L models in 

geospatial image analysis. 

Texture analysis and classification have gained notable attention due to their 

applications across medical, agricultural, and environmental domains. Aggarwal and 

Kumar (2021) proposed a novel D_L mechanism on the basis of Convolutional Neural 

Networks (CNNs), consisting of two sub-models for texture classification. Their 

outcomes were remarkable, with Model-1 attaining 92.42% accuracy and Model-2 

further improving to 96.36%, demonstrating the effectiveness of CNN-based 

approaches in capturing discriminative texture patterns. 
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Abdar et al. (2021) introduced a hybrid dynamic Bayesian D_L (BD_L) model 

incorporating Three-Way Decision (TWD) theory for skin cancer diagnosis. By 

integrating multiple uncertainty quantification (UQ) methods with deep neural 

networks across different classification stages, their approach achieved high precision 

and F1-score on two benchmark skin cancer datasets, highlighting the potential of 

combining probabilistic reasoning with deep learning for robust medical diagnostics. 

Ibrahim et al. (2024) further advanced medical image classification by utilizing a 

pretrained AlexNet model to classify COVID-19, pneumonia, and healthy chest X-ray 

scans. The proposed approach demonstrated strong performance in both three- and 

four-ways classification tasks, attaining greater precision, sensitivity, and specificity, 

reinforcing the efficacy of transfer learning in rapid disease detection. 

Addressing resource-constrained image classification, Ma et al. (2022) proposed a 

deep CNN classification approach with knowledge transfer. The model outperformed 

traditional histogram-based approaches, attaining an impressive precision of 93.4%, 

highlighting the efficiency of leveraging pretrained knowledge for improved 

classification performance. 

In agricultural applications, Gill et al. (2023) developed a hybrid CNN-RNN model for 

fruit classification, demonstrating high efficiency and accuracy suitable for quality 

assessment and sorting. Similarly, Aish et al. (2022) employed VGG16 for fruit 

classification, achieving 100% accuracy, underscoring the potential of deep learning 

to deliver perfect classification results in real-world scenarios. 

Sharma et al. (2022) focused on breast cancer diagnosis, applying CNNs with transfer 

learning and achieving a notable accuracy of 98.4%, reinforcing the role of deep 

learning in augmenting medical diagnostic capabilities. Beyond medical 

applications, Yang et al. (2022) applied various CNN architectures for urban wetland 

identification, with DenseNet121 emerging as the best-performing model. The high 

Kappa and Overall Accuracy (OA) values obtained emphasize the significance of 

deep learning for land cover and environmental classification tasks. 

Collectively, these studies demonstrate the versatility, effectiveness of CNN-based, 

and hybrid deep learning models across diverse domains, achieving high accuracy, 

efficiency, and practical applicability in both medical diagnostics and environmental 

analysis. 

Archana and Jeevaraj (2024) explored Alzheimer’s disease detection using a 12-layer 

CNN model, achieving an impressive accuracy of 97.75% on the OASIS dataset. Their 

approach outperformed existing CNN architectures and was validated through direct 

comparisons with pre-trained models, demonstrating its effectiveness in enhancing 

early and accurate detection of Alzheimer’s disease. 

In the industry of textile, Gao et al. (2019) examined fabric defect detection with a 

deep convolutional neural network incorporating multiple convolution and max-

pooling layers. The model achieved a greater detection precision of 96.52%, 

highlighting its potential for practical applications in real-world manufacturing 

settings. 

Expanding to neurological disorders, Vikas and Rao (2021) developed a hybrid 2D 

CNN–LSTM model for ADHD classification using resting-state functional MRI (rs-fMRI) 

data. Their method demonstrated notable improvements in precision, specificity, 
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sensitivity, F1-score, and AUC compared to existing approaches, indicating the 

promise of D_L in accurately distinguishing ADHD from healthy controls. 

Skouta et al. (2021) analyzed the retinal image classification, leveraging CNNs to 

differentiate between proliferative and normal diabetic retinas, achieving a 

classification accuracy of 95.5%. The use of an expanded dataset enabled the 

capture of fine-grained features, ensuring robust and reliable classification outputs. 

Collectively, previous literature highlights the transformative impact of D_L across 

diverse image classification tasks, spanning medical diagnostics, texture analysis, 

industrial inspection, and neurological disorder detection. 

While traditional methods maintain certain strengths, they rely heavily on expert-

driven feature selection and algorithm tuning. Such approaches often struggle with 

high-dimensional and complex datasets, requiring extensive manual effort in feature 

engineering, and may lack adaptability to evolving information distributions or new 

types of data. Contrarily, D_L automates feature extraction, learning hierarchical 

representations directly from raw information. This enables the capture of intricate 

patterns and correlations that traditional models might overlook. Convolutional Neural 

Networks (CNNs) excel in image-based tasks, whereas Recurrent Neural Networks 

(RNNs) are particularly effective for sequential data. Overall, deep learning models 

frequently surpass traditional approaches, providing superior performance in complex 

classification tasks across multiple domains. 

DISCUSSION 

The given review presents a synthesized overview of recent deep learning 

advancements across image denoising, segmentation, enhancement, feature 

extraction, and classification, outlining the capabilities, strengths, and limitations of 

distinct approaches in diverse application domains. 

In the image denoising realm, multiple D_L models have emerged, each with distinct 

advantages and trade-offs. The Self2Self neural network reduces computational cost 

while relying on data augmentation, DnCNNs enhance denoising accuracy but face 

resource constraints, and DFT-Net manages label imbalance at the risk of losing fine 

details. MPR-CNN emphasizes robustness through careful hyperparameter tuning, 

whereas R2R models strike a balance across noise reduction and computational 

effectiveness. Traditional CNN architectures effectively prevent overfitting, HLF-DIP 

achieves high performance despite complexity, Noise2Noise models balance 

efficiency with generalization, and ConvNet expands receptive fields while facing 

interpretability challenges. Collectively, these approaches illustrate the evolving 

landscape of denoising techniques in image processing. 

Regarding image enhancement, studies have explored a variety of deep learning 

methods. Ming Liu et al. employed Fuzzy-CNN and F-Capsule models for iris 

recognition, achieving robustness and mitigating overfitting. Additionally, scholars 

combined traditional enhancement techniques with EfficientNet and ResNet 

architectures for tuberculosis imaging, improving generalization while contending 

with time and memory demands. Moreover, prior research implemented FCNN mean 

filters to reduce noise with minimal detail loss, while another stream of literature used 

CV-CNN for efficient image deblurring. Other approaches include pix2pixHD for high-

quality MDCT image enhancement, LE-net for low-light recovery, RetinexDIP for 
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accelerated convergence and runtime reduction, and MSSNet-WS for single-image 

deblurring, emphasizing computational efficiency in real-world applications. 

In the segmentation of images, both semantic and instance segmentation 

approaches demonstrate substantial advancements. Semantic segmentation 

leverages models like FCN, U-Net, and DeepLabV3 for tasks such as multi-person 

detection and object recognition, achieving IoU and mIoU scores between 80% and 

86%. Instance segmentation methods, including Mask-RCNN and AFD-UNet, 

accurately delineate individual objects, enabling applications in medical imaging, 

real-time waste collection, and more. These approaches reduce manual intervention, 

improve boundary delineation, and save processing time, though challenges remain 

in computational complexity, hardware requirements, and model customization. 

For feature extraction, deep learning has been applied to diverse domains, from 

texture and color analysis to pattern and geometric feature recognition. One strand 

of research achieved 89.4% accuracy in disease detection, while another strand of 

research reached 97% accuracy in counterfeit detection. Similarly, earlier studies 

reported 97% accuracy for retinal images, for instance, research achieved 95.1–95.7% 

accuracy for chest X-rays using GLCM, GLRM, and LBP with ANN, and another study 

reached 99.5% accuracy for PCam images using AlexNet-GRU. Geometric feature 

extraction was demonstrated in literature (99.4% accuracy in capsule endoscopy) 

and another study (97% accuracy in real-time waste detection with Mask-RCNN), 

showcasing the flexibility of deep learning for extracting diverse image features. 

In image classification, D_L models have proven highly effective across multiclass and 

binary tasks. For multiclass classification, research used ResNet to achieve 99% 

accuracy for brain tumor MRI images, a previous study reached 92.42% on Kylberg 

Texture datasets, and also a study achieved 94% for lung condition classification using 

AlexNet. Fruit classification studies (CNN-RNN hybrid) and (VGG16) demonstrated 

100% accuracy. In binary classification, research achieved 97.75% for Alzheimer’s 

detection, 96.52% in fabric defect detection, 95.32% for ADHD diagnosis using CNN-

LSTM, and 95.5% for diabetic retinopathy detection. 

Overall, the literature illustrates the adaptability, robustness, and high performance of 

deep learning across diverse image processing tasks. They also highlight persistent 

challenges, including dataset biases, computational intensity, interpretability, and 

real-world variability, which must be considered when implementing these methods 

in practical applications. 

CONCLUSIONS 

The systematic review undertakes a comprehensive examination of the diverse image 

processing domains—denoising, enhancement, segmentation, feature extraction, 

and classification. Through a detailed analysis and comparison of these 

methodologies, the review provides a panoramic perspective on the current 

framework of image processing, outlining both the strengths and the inherent 

complexities relevant to their implementation. In the denoising of images, techniques, 

i.e., Self2Self Neural Networks, DnCNNs, and DFT-Net demonstrate significant efficacy 

in noise mitigation. However, persistent complexity remains, including extensive 

preservation and the optimization of hyperparameters. For image enhancement, 

methods, i.e., Novel RetinexDIP, Unsharp Masking, and LE-net effectively enhance the 
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quality of visual, but experience difficulties in managing complex scenes while 

maintaining image authenticity. 

Segmentation approaches range from foundational to advanced models, offering 

reliable object delineation. However, robustness issues arise in scenarios involving 

overlapping objects. Feature extraction methodologies, spanning from standard 

CNNs to LSTM-augmented CNNs, successfully capture essential image features, 

though considerations of computational efficiency and adaptability are critical. In 

the domain of classification, architectures from Residual Networks to CNN-LSTM 

hybrids demonstrate strong potential for precise categorization. Challenges, yet, 

persist in terms of information dependency, computational demands, and approach 

interpretability. By systematically reviewing these methodologies, this paper provides 

nuanced insights into their respective advantages and limitations, enabling scholars 

to make optimal decisions regarding model selection for particular applications. 

Furthermore, the review encompasses a broad spectrum of applications, including 

medical and satellite imagery, botanical analyses of flowers and fruits, and real-time 

scenarios. The domain-specific adaptations of deep learning techniques underscore 

their versatility and effectiveness across complex, real-world contexts. As image 

processing continues to evolve, addressing challenges such as computational 

complexity and interpretability will be essential to fully harness the potential of these 

methodologies.
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Table 1. D_L Approaches for Restoration of Image  

Study / Authors Application / Task 
Model / 

Architecture 

Dataset / 

Domain 

Performance 

Metrics 
Key Strengths 

Limitations / 

Challenges 

Gao et al. (2022) 
Low-light image 

enhancement 
RetinexDIP General images 

Improved 

brightness & 

contrast 

High visual clarity, low 

memory usage 

Complexity in real-

world scenes 

Liu et al. (2020) Iris recognition 
Fuzzy-CNN, F-

Capsule 
Iris datasets 

Robust 

recognition 

Avoids overfitting, 

integrates 

Gaussian/triangular fuzzy 

filters 

Sensitive to noise 

Muchtar et al. 

(2020) 

Tuberculosis X-ray 

classification 

EfficientNet-B4, 

ResNet-50, ResNet-

18 with UM & HEF 

TB X-ray images 
Accuracy & AUC 

high 
Enhanced generalization 

High computational 

demand 

Wang et al. 

(2021) 
Noise reduction FCNN Mean Filter 

Degraded 

images 

PSNR 

improvement 
Efficient noise reduction 

Minor detail loss in 

low-noise images 

Quan et al. 

(2020) 
Image deblurring 

CV-CNN with 

Gabor-domain prior 
General images 

PSNR, SSIM 

improved 
Prevents overfitting 

Computationally 

intensive 

Jin et al. (2021)  
MDCT image 

enhancement 
pix2pixHD 

Medical CT 

images 
Structural clarity High-quality enhancement Risk of overfitting 

Li et al. (2021) Low-light recovery LE-net 

CAV / driver-

assistance 

images 

Visual 

improvement 

metrics 

Generalization, robustness 

Limitations in real-

world lighting 

conditions 

Kim et al. (2023) 
Single-image 

deblurring 
MSSNet-WS General images PSNR, SSIM Computationally efficient Model complexity 

Ahmad. et al. 

(2020) 

Multi-person top-

view segmentation 

FCN, U-Net, 

DeepLabV3 

Surveillance 

datasets 
Accuracy, mIoU 

High segmentation 

precision 

Requires large 

labeled datasets 

Wang et al. 

(2020) 

Complex 

boundary 

segmentation 

Adaptive UNet 
Liver CT, natural 

images 

Accuracy, 

boundary 

delineation 

Handles shallow & deep 

features 
Hardware intensive 

Siti Rachmatullah 

et al. (2020) 

Fetal heart defect 

detection 
Mask-RCNN 

Ultrasound fetal 

images 
mAP ~99.48% 

Accurate multi-class 

detection 

High computational 

cost 

Park et al. (2021) 
Food instance 

segmentation 

Mask-RCNN with 

synthetic data 
Food datasets 

52.2% → +6.4% 

after fine-tuning 

Reduces real-world 

annotation burden 

Domain adaptation 

required 

Magsi et al. 

(2020) 

Date palm disease 

detection 
CNN 

Agricultural 

images 
Accuracy 89.4% 

Automated disease 

detection 
Dataset limitations 
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Study / Authors Application / Task 
Model / 

Architecture 

Dataset / 

Domain 

Performance 

Metrics 
Key Strengths 

Limitations / 

Challenges 

Zhang et al. 

(2020) 

Counterfeit facial 

image detection 
CNN 

Synthetic/real 

facial images 
Accuracy 97.6% Efficient & fast 

May struggle with 

novel attacks 

Sungheetha and 

Sharma (2021) 

Diabetic retinal 

detection 
Deep CNN Retinal images Accuracy 97% 

Detects subtle visual 

patterns 

Sensitive to image 

quality 

Ahmad et al. 

(2022) 

Breast cancer 

detection 
AlexNet-GRU PCam dataset High accuracy 

Superior metastatic tissue 

detection 

Requires large 

annotated datasets 

Hussain et al. 

(2020) 

Alzheimer’s 

detection 
12-layer CNN OASIS MRI Accuracy 97.75% 

Surpasses pre-trained 

models 

Computationally 

heavy 

Vikas and Rao 

(2021) 
ADHD classification CNN-LSTM rs-fMRI Accuracy 95.32% Sequential data handling 

Complex 

preprocessing 

required 

Skouta et al. 

(2021) 

Diabetic 

retinopathy 

detection 

CNN Retinal images Accuracy 95.5% High feature capture 
Requires large 

datasets 

Gill et al. (2023) Fruit classification CNN-RNN 
Agricultural 

dataset 
High accuracy 

Sequential & spatial 

features 

Sensitive to dataset 

variability 

Abu-Jamie et al. 

(2022) 
Fruit classification VGG16 Fruit dataset Accuracy 100% High classification precision 

Limited generalization 

to new datasets 

Sharma and 

Mishra (2022) 

Breast cancer 

diagnosis 

CNN + Transfer 

Learning 
Medical images Accuracy 98.4% 

Rapid training, high 

performance 

Relies on quality 

pretrained weights 

Ma et al. (2022) 

Image 

classification under 

constraints 

CNN + Knowledge 

Transfer 
General images Accuracy 93.4% Efficient with limited data 

Transfer learning 

limitations 

Table 2. D_L Approaches for enhancements of image  

Study / 

Authors 
Task 

Model / 

Architecture 

Dataset / 

Domain 

Performance 

Metrics 
Key Strengths 

Limitations / 

Challenges 

Hyperparameters / 

Tuning 

Convergence 

/ Efficiency 

Quan et 

al. (2020) 

Image 

denoising 
Self2Self NN 

Noisy 

images 
PSNR, SSIM 

Cost reduction, 

data 

augmentation 

Dependent on 

data quality 

Needs careful learning 

rate scheduling 

Moderate 

convergence 

Yan et al. 

(2020) 

Speckle noise 

reduction 
DnCNN 

DHSPI 

images 
MSE 

Accurate noise 

removal 

May lose fine 

details 
Layer depth, filter size 

High 

efficiency 
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Study / 

Authors 
Task 

Model / 

Architecture 

Dataset / 

Domain 

Performance 

Metrics 
Key Strengths 

Limitations / 

Challenges 

Hyperparameters / 

Tuning 

Convergence 

/ Efficiency 

Sori et al. 

(2020) 

Medical image 

denoising 
Two-path CNN 

CT lung 

images 

Accuracy, 

sensitivity, 

specificity 

Robust feature 

extraction 

High 

computational 

cost 

Filter numbers, kernel size Moderate 

Hasti and 

Shin 

(2022) 

Fuel spray 

image 

denoising 

Modified U-Net 
Spray 

images 
MSE, PSNR 

Superior to CNN & 

ResNet 

Complex 

architecture 
Learning rate, epochs Moderate 

Niresi 

and Chi 

(2022) 

Hyperspectral 

image 

denoising 

HLF-DIP 

(unsupervised) 
HSI images 

Noise removal 

efficiency 

Handles mixed 

noise, preserves 

edges 

High 

computational 

complexity 

Minimization parameters 
Slower 

convergence 

Gao et 

al. (2022) 

Low-light 

enhancement 
RetinexDIP 

Low-light 

images 

PSNR, visual 

clarity 

Brightness & 

contrast 

restoration 

May struggle 

with complex 

scenes 

Iteration number, 

decomposition layers 
Efficient 

Liu et al. 

(2020) 

Iris image 

enhancement 

Fuzzy-CNN, F-

Capsule 
Iris dataset Accuracy Avoids overfitting 

Sensitive to 

noise 
Fuzzy filter parameters 

Fast 

convergence 

Muchtar 

et al. 

(2020) 

X-ray 

enhancement 

EfficientNet-B4, 

ResNet-50/18 
TB X-ray 

Accuracy, 

AUC 

High 

generalization 

High 

memory/time 
Learning rate, batch size Moderate 

Jin et al. 

(2021) 

MDCT image 

enhancement 
pix2pixHD CT images PSNR, SSIM 

High-quality 

image 

enhancement 

Risk of 

overfitting 

Generator/discriminator 

layers 

Moderate 

convergence 

Li et al. 

(2021) 

Low-light 

recovery 
LE-net 

CAV / 

driver-

assistance 

images 

PSNR, visual 

improvement 

Robust in real-

world scenarios 

Sensitive to 

extreme 

conditions 

Network depth, learning 

rate 
Fast 

Kim et al. 

(2023) 

Single image 

deblurring 
MSSNet-WS 

General 

images 
PSNR, SSIM 

Computationally 

efficient 
Complex model 

Stage numbers, kernel 

size 
Fast 

Ahmad. 

et al. 

(2020) 

Multi-person 

segmentation 

FCN, U-Net, 

DeepLabV3 

Top-view 

images 

Accuracy, 

mIoU 

Accurate multi-

person 

segmentation 

Needs large 

labeled dataset 
Filter size, depth Moderate 

Wang et 

al. (2020) 

Complex 

boundary 

segmentation 

Adaptive UNet 

Liver CT, 

natural 

images 

Accuracy 
Handles shallow & 

deep features 

High 

computational 

cost 

Layer numbers, kernel 

size 
Moderate 
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Study / 

Authors 
Task 

Model / 

Architecture 

Dataset / 

Domain 

Performance 

Metrics 
Key Strengths 

Limitations / 

Challenges 

Hyperparameters / 

Tuning 

Convergence 

/ Efficiency 

Nurmaini 

et al. 

(2020) 

Fetal heart 

instance 

segmentation 

Mask-RCNN 
Ultrasound 

images 
mAP 99.48% 

Multiclass 

chamber 

detection 

High 

computational 

demand 

ROI size, learning rate Moderate 

Park et 

al. (2021) 

Food instance 

segmentation 

Mask-RCNN + 

synthetic data 

Food 

images 

IoU 52.2% → 

+6.4% 

Reduces real-

world annotation 

need 

Domain 

adaptation 

required 

Anchor box size Moderate 

Magsi et 

al. (2020) 

Feature 

extraction 
CNN 

Date palm 

disease 

images 

Accuracy 

89.4% 

Automated 

disease detection 

Dataset 

limitations 

Layer depth, learning 

rate 
Fast 

Zhang et 

al. (2020) 

Feature 

extraction 
CNN 

Facial 

images 

(real & 

fake) 

Accuracy 

97.6% 
Efficient & fast 

May fail on 

novel attacks 
Filter size, epochs Fast 

Table 3. D_L Approaches for segmentation of an image  

Author Methodology Dataset 
Evaluation 

Metrics 
Performance Advantages Limitations 

Quan et 

al. (2020) 

Self2Self Neural 

Network (NN) 
Set9, BSD68 SSIM, PSNR PSNR: 37.52; SSIM: 0.980 

Reduces annotation 

cost 

Dependent on data 

augmentation 

Yan et al. 

(2020) 
Denoising CNNs 

Simulated fringe 

pattern dataset 
MSE 0.8654 

Enhances wrapped 

phase accuracy 

High computational cost 

and long training time 

Sori et al. 

(2020) 

DFT-Net for denoising 

and detection 

CT scan images 

(KDSB, LUNA16) 

Accuracy, 

Recall, 

Specificity 

R: 0.874; S: 0.891; A: 0.878 

Effectively handles 

image label 

imbalance 

Possible detail loss during 

denoising 

Jiang et al. 

(2021) 

MPR-CNN (Parallel 

Residual Denoising) 

Chest X-ray 

images (COVID-

19) 

PSNR, SSIM PSNR: 36.368; SSIM: 0.895 
Robust and time-

efficient 

Requires hyperparameter 

tuning 

Pang et al. 

(2021) 
R2R Noise Reduction SIDD Benchmark PSNR, SSIM 

Noise = 50 → PSNR: 26.13; 

SSIM: 0.709 

Achieves results 

comparable to 

supervised training 

Computationally intensive; 

limited noise handling 

Hasti and 

Shin (2022) 

Standard and 

Modified CNN 

Architectures 

Mie scattered 

image dataset 
MSE, PSNR MSE: 0.0053; PSNR: 22.757 Prevents overfitting 

High time and memory 

consumption 
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Author Methodology Dataset 
Evaluation 

Metrics 
Performance Advantages Limitations 

Niresi and 

Chi (2022) 

HLF-DIP Algorithm for 

HSI Denoising 

HYDICE HSI 

datasets 

MPSNR, MSSIM, 

MSAM, MFSIM 

Noise = 40 → MPSNR: 49.49; 

MSSIM: 0.998; MSAM: 0.024; 

MFSIM: 0.999 

No regularizers; user-

friendly approach 

Requires single parameter 

tuning; struggles with mixed 

noise 

Tawfik et 

al. (2022) 

Noise2Noise 

Denoising Model 
MCT images PSNR, SSIM PSNR: 20.607; SSIM: 0.546 

Cost- and time-

efficient 

Limited generalization 

ability 

Meng and 

Zhang 

(2022) 

ConvNet for Gray 

Image Denoising 
BSD-68 

PSNR, SSIM, 

FOM 

PSNR: 26.44; SSIM: 0.6797; 

FOM: 1 

Improved receptive 

field 
Poor interpretability 

Table 4. D_L Approaches for Feature Extraction 

Author Methodology Dataset Metrics Results Type Advantages Disadvantages 

Magsi et al. 

(2020) 
CNN 

Date palm disease 

images 

Accuracy 

(ACC) 
89.4% 

Texture / 

Color 

Focused and domain-

specific approach 

Limited generalization 

capability 

Sharma et al. 

(2020) 
CNN 

Chest X-ray 

dataset (Kaggle) 
Accuracy, Loss 90% Texture 

Data augmentation for 

overfitting prevention; 

high scalability and 

accuracy 

Disease specificity; 

model complexity; 

dataset quality; limited 

real-world applicability 

Zhang et al. 

(2020) 

Novel counterfeit feature 

extraction with CNN 
Face-swap images 

Accuracy 

(ACC) 
97% Counterfeit 

Reduced space and 

time complexity; faster 

convergence and 

training efficiency 

Needs improvement in 

robustness under 

compression 

conditions 

Simon and V 

(2020) 

(Review) 

AlexNet, VGG19, 

Inception, 

InceptionResNetV3, 

ResNet, DenseNet201 

KTH-TIPS, CURET, 

and flower 

datasets 

Accuracy 

(ACC) 
– Texture 

Comprehensive review 

of multiple CNN 

architectures 

Lack of empirical 

comparison results 

Sungheetha 

and Sharma 

(2021) 

CNN Retinal images 

Class score, 

Accuracy, 

Precision, 

Specificity, 

Recall 

97% Pattern 

High flexibility and 

adaptability for pattern 

recognition 

Limited model 

customization 

Devulapalli et 

al. (2023) 
GoogLeNet model 

UC Merced 

dataset (USGS 

National Map – 

Similarity 

metrics, 
90% Texture 

Hybrid feature extraction 

combining Gabor-based 

texture with 

High computational 

complexity 
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Author Methodology Dataset Metrics Results Type Advantages Disadvantages 

metropolitan 

region) 

Precision, 

Recall, MAP 

GoogLeNet’s deep 

features 

Shankar et al. 

(2022) 

FM-ANN, GLCM, GLRM, 

and LBP 

Chest X-ray 

images 

Accuracy, 

Sensitivity, 

Specificity, F-

score 

95.1% – 

95.7% 
Texture 

Efficient feature 

extraction and 

optimized parameter 

tuning 

Limited model 

interpretability 

Ahmad et al. 

(2022) 

AlexNet-GRU hybrid 

model 

PCam dataset 

(Kaggle) 

Accuracy, 

Precision, 

Sensitivity, 

Specificity 

99.5% Color 

High accuracy and 

enhanced performance 

metrics 

High computational 

cost and need for 

specialized hardware 

Sharif et al. 

(2021) 
CNN 

Wireless capsule 

endoscopy 

images 

Accuracy, 

Sensitivity, 

Specificity, FPR, 

AUC, Precision 

99.4% Geometric Fast computation time 

Reduced applicability 

in real-time 

environments 

Aarthi and 

Rishma (2023) 
MRCNN 

Real-time waste 

images 
Accuracy 97% Geometric 

High robustness and 

effective operation in 

waste segregation 

systems 

Reliability challenges 

and real-time 

efficiency concerns 

Table 5. D_L Approaches for classification of image  

Author Model(s) Dataset Metrics Accuracy Type Advantages Disadvantages 

Abdelaziz 

Ismael et al. 

(2020) 

Residual 

Networks 

MRI image 

dataset 

Precision, Recall, 

F1-Score, 

Accuracy (%) 

99% 
Multi-

class 

Shortcut connections 

enhance accuracy and 

mitigate vanishing 

gradients 

Limited or unrepresentative 

data impacts generalization 

Xu et al. 

(2021) 

RNN and 

Random 

Forest 

UC Merced 
Precision, Recall, 

Accuracy (%) 
87% 

Multi-

class 

High accuracy, automated 

feature learning, scalability 

Data dependency, high 

computational cost, 

interpretability challenges, 

overfitting risk 

Aggarwal 

and Kumar 

(2021) 

CNN 

Kylberg 

Texture 

dataset 

Precision, Recall, 

F1-Score, 

Accuracy (%) 

92.42% Pattern 

Flexible design, domain 

adaptation, reduced 

overfitting 

Requires extensive labeled 

data for supervised training 

Abdar et al. 

(2021) 
TWDBDL 

Skin cancer 

datasets 

Area Under the 

Curve (AUC) 
— Binary 

Strong discriminative 

capability 

Model performance sensitive to 

data imbalance 
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Author Model(s) Dataset Metrics Accuracy Type Advantages Disadvantages 

Ibrahim et al. 

(2024) 

AlexNet 

model 

Lung condition 

images 

Sensitivity, 

Specificity, 

Accuracy (%) 

88.95% – 90.96% 
Multi-

class 

Flexible hybrid approach 

and efficient uncertainty 

quantification 

Limited computing resources 

and small dataset size for 

COVID-19 pneumonia cases 

Kong et al. 

(2022) 

CNN and 

SVM hybrid 
Caltech256 

Accuracy 

analysis 
93.4% 

Multi-

class 

Improved generalization 

and reduced overfitting 

High complexity, interpretability 

limitations, reliance on labeled 

samples 

Gill et al. 

(2023) 

Hybrid 

CNN-RNN 
Fruits dataset 

Precision, Recall, 

F-measure, 

Accuracy (%) 

— (Impressive 

performance) 

Multi-

class 

Sequential labeling and 

strong comparative 

performance 

High data dependency and 

computational intensity 

Abu-Jamie et 

al. (2022) 
VGG16 Fruit dataset 

Precision, Recall, 

F-measure, 

Accuracy (%) 

100% 
Multi-

class 

Exceptional accuracy, 

effective CNN utilization 

Potential overfitting, dataset 

bias, limited generalization to 

unseen data 

Hussain et al. 

(2020) 
CNN 

OASIS MRI 

data 

Precision, Recall, 

F1-Score, 

Accuracy (%) 

97.75% Binary 

High performance, 

enhanced accuracy 

through direct comparison 

Model complexity and limited 

applicability beyond specific 

dataset 

Gao et al. 

(2019) 
CNN Fabric images 

Detection 

accuracy, False 

alarm rate, etc. 

96.52% Binary 

Prevents overfitting, 

ensures faster 

convergence, supports 

insightful error analysis 

Limited dataset size, 

generalization issues, 

challenges in subtle defect 

detection 

Vikas and 

Rao (2021) 
CNN–LSTM 

ADHD-200 

(multi-site 

data) 

Specificity, 

Sensitivity, F1-

Score, Accuracy 

(%) 

95.32% Binary 

Improved diagnostic 

precision and intelligent 

ADHD detection potential 

High computational demand, 

data quality dependency, 

limited contextual 

interpretability 

Skouta et al. 

(2021) 
CNN 

Diabetic 

retinopathy 

dataset 

Sensitivity, 

Specificity, 

Accuracy (%) 

95.5% Binary 

Accurate automated 

screening enabling rapid 

diagnosis 

Dependent on image quality, 

architectural optimization, and 

network depth tuning 
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