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The rapid evolution of global supply networks, characterized by increasing
uncertainty, demand volatility, and systemic disruptions, has exposed the
limitations of conventional optimization-based and rule-driven supply
chain management systems. In response fo these challenges, the
emerging paradigm of Supply Chain 5.0 emphasizes human-centricity,
resilience, sustainability, and inteligent autonomy through advanced
cyber-physical integration. This study proposes a Digital Twin-enabled
predictive intelligence framework for Supply Chain 5.0 that integrates real-
time data synchronization, hybrid deep reinforcement learning, and
adaptive decision management to achieve self-optimizing and resilient
operational control. The proposed framework establishes a high-fidelity
digital twin that confinuously mirrors the physical supply chain by
assimilating heterogeneous data streams from demand signals, inventory
states, logistics operations, and disrupfion indicators. This cyber-physical
representation serves as an interactive simulation environment for
infelligent policy learning and scenario evaluation. At the core of the
framework, a hybrid deep reinforcement learing architecture is
developed by combining model-free policy learning with model-based
optimization elements, enabling both strategic foresight and rapid
tactical adaptation under dynamic conditions. The learning agent is
designed to optimize multi-objective performance criteria, including
operational cost efficiency, service-level reliability, disruption resilience,
and sustainability-oriented  metrics, while  maintaining real-time
responsiveness. Unlike static optimization or reactive control approaches,
the proposed predictive inteligence mechanism enables proactive
anticipation of demand fluctuations, transportation delays, and supply
disruptions through continuous interaction with the digital twin.
Furthermore, a human-in-the-loop governance layer is incorporated fo
ensure explainability, supervisory control, and ethical alignment of
autonomous decisions, reinforcing the human-centric vision of Supply
Chain 5.0. The effectiveness of the proposed framework is evaluated
through a multi-echelon supply chain simulation under diverse uncertainty
scenarios, including stochastic demand patterns and disruption events.
Comparative analysis against traditional optimization and standalone
deep reinforcement learning baselines demonstrates substantial
improvements in decision adaptability, recovery speed, and overall
system robustness. The results highlight the framework’s ability to
dynamically reconfigure sourcing, inventory, and distribution strategies in
real time while maintaining stability and performance. Overall, this study
contributes a scalable and intelligent decision-making architecture that
advances digital twin—-driven autonomy in next-generation supply chains,
offering significant theoretfical and practical implications for resilient,
adaptive, and human-centric supply chain management.

Keywords: Digital Twin; Hybrid Deep Reinforcement Learning; Predictive Decision Intelligence; Supply Chain
5.0; Multi-Agent Learning; Real-Time Optimization; Cyber-Physical Supply Chains; Adaptive Control; Intelligent

Automation.
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INTRODUCTION

The increasing globalization of markets, coupled with heightened uncertainty arising
from geopolitical tensions, climate-induced disruptions, pandemics, and volatile
consumer demand, has fundamentally fransformed the operational landscape of
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modern supply chains. Contemporary supply networks are no longer linear or static
systems but complex, adaptive ecosystems characterized by tightly coupled multi-
echelon structures, nonlinear interactions, and high levels of interdependence.
Traditional supply chain management approaches, which predominantly rely on
deterministic optimization, periodic planning cycles, and rule-based decision support
systems, struggle to cope with such complexity. These methods often assume stable
operating conditions and complete information, rendering them ineffective in
environments marked by rapid change, incomplete visibility, and systemic shocks. The
transition toward Supply Chain 4.0 represented a major step forward by infroducing
digital technologies such as the Internet of Things, cloud computing, big data
analytics, and automation to enhance visibility, efficiency, and responsiveness [1].
However, despite these advancements, Supply Chain 4.0 remains largely efficiency-
driven and reactive in nature.

Decision-making is typically based on historical data analysis and predefined
optimization models that lack adaptive inteligence and foresight. As a result, these
systems often fail to anticipate disruptions, dynamically reconfigure operations, or
incorporate human-centric considerations such as trust, tfransparency, and ethical
governance. In response to these limitations, the emerging paradigm of Supply Chain
5.0 has gained increasing attention, emphasizing resilience, sustainability, human-
cenftricity, and intelligent autonomy through advanced cyber-physical integration
and artificial intelligence [2]. A cornerstone technology enabling this paradigm shift is
the digital twin, which provides a high-fidelity virtual replica of physical supply chain
assets, processes, and flows.

By continuously synchronizing real-time data from production systems, logistics
networks, inventory nodes, and market signals, digital twins enable enhanced
sifuational awareness and predictive simulation capabilities. In principle, a digital twin
allows decision-makers to explore alternative strategies, evaluate risk scenarios, and
assess system-wide impacts before implementing actions in the physical world.
Nevertheless, most existing digital twin applications in supply chain contexts remain
limited to descriptive visualization, performance monitoring, or offline scenario
analysis. The absence of embedded intelligence capable of learning optimal policies
and adapting decisions in real time significantly restricts the transformative potential
of digital twins in operational decision-making.

In parallel, deep reinforcement learning has emerged as a powerful computational
paradigm for sequential decision-making in complex, uncertain, and dynamic
environments. By learning optimal control policies through interaction with an
environment, deep reinforcement learning has demonstrated strong performance in
domains such as robotics, autonomous systems, and energy systems [3]. Recent
research has extended these ftechniques to supply chain applications, including
inventory conftrol, transportation scheduling, and production planning. However,
purely model-free reinforcement learning approaches often suffer from slow
convergence, instability, and limited robustness when exposed to rare but high-
impact disruption events. Moreover, the lack of a continuously updated and realistic
environment constrains their applicability in real-world supply chain systems, where
inaccurate state representations can lead to suboptimal or unsafe decisions.

These limitations highlight a critical research gap at the intersection of digital twin
technology, reinforcement learning, and Supply Chain 5.0. Specifically, there is a lack
of unified frameworks that tightly integrate real-time digital twins with hybrid deep
reinforcement learning architectures capable of predictive, adaptive, and human-
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centric decision intelligence. Existing studies tend to address these components in
isolation, resulting in fragmented solutions that fail to exploit their combined potential.
To clearly position the present study within the existing body of knowledge, Table 1
provides a comparative overview of representative supply chain decision-making
approaches and their inherent limitations.

Table 1.
Comparative positioning of existing supply chain decision frameworks and the proposed
approach
Approach Digital Twin Learning Adaptivity to Human- Key Limitations
Category Integration Capability Disruptions Centric
Governance
Traditional No None Low Limited Static,
Optimization deterministic, poor
Models scalability
Supply Chain Partial Supervised / Moderate Low Reactive, limited
4.0 Analytics Predictive autonomy
Standalone No Model-free RL  High (local) Very Low Slow
DRL-Based convergence,
Methods instability
Digital Twin- Yes None Low- Moderate No autonomous
Based Moderate decision-making
Simulafion
Proposed DT- Yes (Real- Hybrid DRL High High (Human-  Addresses
Hybrid DRL Time) (Model-Free + (Predictive & in-the-Loop) adaptability,
Framework Model-Based) Adaptive) resilience, and

explainability

Motivated by this gap, this paper proposes a Digital Twin—-enabled predictive
inteligence framework for Supply Chain 5.0 that integrates real-time cyber-physical
synchronization, hybrid deep reinforcement learning, and human-in-the-loop decision
governance. The digital twin serves as a continuously updated virtual environment in
which intelligent agents can simulate future system trajectories, anticipate disruptions,
and evaluate alternative actions prior to execution. The hybrid learning architecture
combines the adaptability of model-free reinforcement learning with the stability and
foresight of model-based optimization, enabling self-optimizing decision
management across multi-echelon supply chains under uncertainty. Furthermore, the
incorporation of human supervisory control ensures fransparency, accountability, and
alignment with organizational and ethical objectives, reinforcing the human-centric
vision of Supply Chain 5.0.

Evolution from Supply Chain 4.0 to Supply Chain 5.0:

The concept of Supply Chain 4.0 emerged as a natural extension of the Industry 4.0
paradigm, which aimed to ftransform traditional industrial systems through
digitalization, automation, and data-driven integration. Within supply chain contexts,
this fransformation was primarily driven by the adoption of enabling technologies such
as the Internet of Things, cloud computing, big data analytics, radio-frequency
identification, and cyber-physical systems. These technologies significantly improved
end-to-end visibility, real-time tracking of materials and information flows, and
coordination across procurement, production, warehousing, and distribution
functions. As a result, Supply Chain 4.0 frameworks delivered measurable gains in
operational efficiency, cost reduction, and responsiveness under relatively stable
conditions. Despite these advances, the literature increasingly recognizes that Supply
Chain 4.0 remains fundamentally efficiency-oriented and reactive in nafure [4].
Decision-making mechanisms are typically based on predefined optimization models,
rule-based heuristics, or predictive analytics trained on historical data. While such
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approaches perform adequately in stationary or mildly stochastic environments, they
struggle to cope with high levels of uncertainty, non-stationarity, and systemic
disruptions. Events such as global pandemics, geopolitical conflicts, climate-related
disasters, and sudden demand shocks have exposed the fragility of efficiency-driven
supply chains optimized primarily for cost minimization. Consequently, Supply Chain
4.0 systems often lack the adaptive intelligence required to anticipate disruptions,
learn from evolving conditions, and dynamically reconfigure operational strategies in
real time. In response to these limitations, the paradigm of Supply Chain 5.0 has
emerged, inspired by the broader vision of Industry 5.0. Supply Chain 5.0 extends
beyond digitalization and automation to explicitly prioritize resilience, sustainability,
and human-centricity alongside economic performance [5]. Rather than replacing
human decision-makers, this paradigm emphasizes collaborative inteligence, where
advanced artificial inteligence systems augment human expertise through
explainable, ethical, and fransparent decision support. Supply Chain 5.0 envisions
autonomous yet supervised systems capable of perceiving changes in the
environment, predicting future system states, and adapting decisions proactively
while maintaining human oversight and governance.

A defining characteristic of Supply Chain 5.0 is the shift from reactive optimization to
predictive and adaptive intelligence. This shift requires continuous learning from real-
time data, the ability to simulate future scenarios, and closed-loop feedback
between the physical supply chain and its digital representation. Recent studies argue
that such capabilities cannot be achieved through isolated analytics or automation
technologies alone. Instead, they require ftightly integrated cyber-physical
architectures that combine real-time data synchronization, intelligent learning
algorithms, and decision governance mechanisms. While the conceptual foundations
of Supply Chain 5.0 are increasingly well-arficulated in the literature, practical
operational frameworks that translate these principles into real-time decision-making
systems remain scarce, highlighting a critical research gap [6]. To clearly distinguish
the evolution from Supply Chain 4.0 to Supply Chain 5.0, Table 2 summarizes the key
differences in objectives, technologies, and decision-making paradigms reported in
prior studies.

Table 2.
Comparison between Supply Chain 4.0 and Supply Chain 5.0 paradigms
Dimension Supply Chain 4.0 Supply Chain 5.0
Primary Objective  Efficiency and cost Resilience, sustainability, and
optimization human-centric value
Decision-Making Reactive, rule-based, and Predictive, adaptive, and learning-
Logic optimization-driven driven
Role of Al Decision support and Autonomous intelligence with
prediction human oversight
Data Utilization Historical and near-real-time Continuous real-time data and
data future-state prediction
System Limited, scenario-dependent High, self-adaptive and self-
Adaptability optimizing
Human Reduced through automation  Human-in-the-loop and ethical
Involvement governance
Response to Reactive recovery Proactive anticipation and rapid
Disruptions reconfiguration

Figure 1 conceptually illustrates this paradigm shift by highlighting the transition from
digitally enabled yet reactive Supply Chain 4.0 systems toward intelligent, adaptive,
and human-centric Supply Chain 5.0 architectures. The figure emphasizes the growing
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role of real-time intelligence, cyber-physical integration, and learning-based decision
management in next-generation supply chains.

Supply Chain 4.0 Supply Chain 5.0

Digitally Enabled & Reactive Intelligent & Human-Centric

loT & Sensors r Al & Cognitive Computing

-

[ Big Data Analytics ] [ Human-Al Collaboration ]
[ Automation & Robotics ] [ Sustainability & Resilience ]
Cloud Computing ] igm Shift [ Ethics & Social Responsibility ]
~ ~
Reactive Decision Making ] [ Proactive & Adaptive Decisions ]
Data Driven Automatlon— Human-Centric Sustainability Driven
Focused
P P
Data-Driven Automation- Human-Centric Sustainability Driven
Focused
[ Data-Driven ] [Automation Focused] [ Human-Centric ] [Sustainability Driven]
Data-Driven Automation- - Hum 1-C s ‘j‘u"s.té‘fiﬁa‘if’)i[it’)"“/
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Figure 1.

Paradigm shift from supply chain 4.0 to 5.0

Overall, the evolution from Supply Chain 4.0 to Supply Chain 5.0 reflects a
fundamental shift in how supply chains are designed, managed, and optimized. The
literature increasingly suggests that achieving the vision of Supply Chain 5.0 requires
inteligent, learning-enabled frameworks that integrate real-time  digital
representations with adaptive decision-making mechanisms and human-centric
governance. This insight directly motivates the need for Digital Twin-enabled
predictive intelligence architectures capable of supporting real-time, adaptive, and
self-optimizing decision management in complex supply chain environments.

Hybrid Learning Architectures and Human-in-the-Loop Systems:

The increasing scale, interconnectedness, and uncertainty of modern supply chains
have exposed fundamental limitations in purely model-free deep reinforcement
learning approaches when applied to real-world operational decision-making.
Although deep reinforcement learning enables agents to learn optimal policies
through continuous interaction with dynamic environments, it often suffers from slow
convergence, reward sparsity, instability, and limited generalization under rare but
high-impact disruption scenarios. These challenges are amplified in multi-echelon
supply chains, where decision spaces are high-dimensional, system dynamics are non-
stationary, and operational constraints must be respected in real fime [7].
Consequently, recent research has increasingly shifted toward hybrid learning
architectures that combine reinforcement learning with model-based optimization,
heuristics, and simulation-driven planning mechanisms.

Hybrid learning architectures aim to leverage the complementary strengths of
different decision paradigms. Model-based components, such as mathematical
programming, rule-based heuristics, and predictive models, embed domain
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knowledge, enforce feasibility constraints, and improve training stability during early
learning stages. In contrast, model-free reinforcement learning components provide
adaptability, exploration capability, and resilience to uncertainty by continuously
updating policies based on observed system feedback [8]. By integrating these
elements, hybrid approaches seek to balance exploration and exploitation,
accelerate convergence, and enhance robustness under volatile operating
conditions. Prior studies in logistics planning, inventory control, and production
scheduling report that hybrid learning systems consistently outperform standalone
opfimization or reinforcement learning models, particularly in  environments
characterized by frequent disruptions and demand uncertainty.

Parallel to advances in hybrid learning, human-in-the-loop (HITL) systems have gained
significant attention in the artificial inteligence and decision sciences literature. HITL
frameworks emphasize the active involvement of human decision-makers in Al-driven
systems to ensure interpretability, trust, accountability, and ethical alignment. In
supply chains, decisions often have long-term economic, environmental, and social
implications, making fully autonomous decision-making both impractical and
undesirable. Human-in-the-loop mechanisms enable domain experts to supervise,
validate, and override Al-generated actions, while also providing contextual
feedback that can be used to refine learning policies. This collaborative inteligence
paradigm is closely aligned with the human-centric philosophy of Supply Chain 5.0,
which seeks to augment rather than replace human expertise [?].

Despite their promise, existing hybrid learning and HITL approaches are frequently
studied in isolation. Hybrid reinforcement learning models are commonly developed
in static or simplified simulation environments that do not reflect real-time operational
dynamics, while human-in-the-loop mechanisms are often implemented as post-
decision validation layers rather than being embedded within the learning process
itself. As a result, most existing frameworks fail to deliver truly predictive, adaptive, and
human-centric decision inteligence in live operational settings. The absence of
confinuous feedback between the physical supply chain, learning agents, and
human supervisors remains a critical limitation. Table 3 summarizes representative
learning architectures and decision governance mechanisms reported in the
literature, highlighting their relative strengths and limitations.

Table 3.
Comparison of learning architectures and decision governance approaches in supply chain
systems
Architecture Type Learning Adaptability Interpretability Human Key Limitations
Paradigm Oversight
Rule-Based & Determinist  Low High High Static, limited
Optimization Models  ic, model- scalability
based
Standalone Deep Model-free  High (local) Low Very Low  Slow
Reinforcement RL convergence,
Learning instability
Hybrid Learning (RL+ Model- Moderate— Moderate Low Limited real-time
Opftimization) based + High integration
model-free
Human-in-the-Loop Varies Moderate High High Often reactive,
Al Systems non-adaptive
DT-Enabled Hybrid Hybrid DRL  High High High Addresses
DRL with HITL + Digital (Predictive & resilience, trust,
(Proposed) Twin Adaptive) and scalability

The comparison in Table 3 demonstrates that no single existing approach sufficiently
addresses adaptability, fransparency, and real-time operational intelligence
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simultaneously. While hybrid learning improves performance and stability, and HITL
systems enhance trust and governance, their lack of integration with continuously
synchronized system representations limits their effectiveness. This observation
underscores the need for unified architectures that combine hybrid learning, human
oversight, and real-time system awareness to fully realize the vision of Supply Chain
5.0. Figure 2 shows the Hybrid learning and human-in-the-loop decision intelligence
architecture for Supply Chain 5.0.

The figure illustrates a closed-loop decision framework in which model-based
optimization and model-free deep reinforcement learning interact within @
confinuously synchronized digital twin environment. Human supervisory control is
embedded within the learning and execution loop to provide validation, ethical
governance, and strategic guidance, enabling predictive, adaptive, and human-
centric supply chain decision management. The literature clearly indicates that
neither fully autonomous Al systems nor purely human-driven decision processes are
sufficient for managing complex, disruption-prone supply chains. Hybrid learning
architectures and human-in-the-loop governance represent complementary and
necessary components of next-generation decision systems [10]. However, the lack
of infegrated frameworks that embed hybrid reinforcement learning within real-time
digital twin environments, while systematically incorporating human oversight,
remains a significant research gap. Addressing this gap is essential for enabling
predictive, resilient, and ethically aligned decision intelligence and directly motivates
the Digital Twin-enabled hybrid deep reinforcement learning framework proposed in
this study.
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Figure 2.
Hybrid learning and human-in-the-loop decision intelligence architecture for Supply Chain 5.0.

METHODOLOGY
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This study employs a systematic, integrative, and theory-driven methodology to
design, implement, and evaluate an intelligent decision-making framework that aligns
with the foundational principles of Supply Chain 5.0, including resilience, sustainability,
adaptability, and human-centric intelligence. Modern supply chains operate as
complex socio-technical systems characterized by nonlinear interactions, stochastic
dynamics, multi-echelon interdependencies, and frequent exposure to disruptions
originating from both internal operations and external environments. In such contexts,
conventional analytical models or purely data-driven approaches are inherently
limited, as they often rely on static assumptions, offline learning, or narrowly defined
optimization objectives that fail to capture real-time system evolution, learning
dynamics, and the role of human oversight in decision-making processes.

To address these limitations, the proposed methodology integrates design science
research with simulation-based experimentation to develop a cyber-physical decision
inteligence artifact that is both theoretically grounded and practically
implementable [11]. Design science provides a rigorous foundation for artifact
construction and evaluation, enabling the systematic development of a novel
decision framework rather than retrospective analysis of historical data. Simulation-
based experimentation complements this approach by offering a controlled yet
realistic environment in which complex supply chain dynamics, uncertainty, and
disruption scenarios can be systematically explored without risking operational
stability. Together, these methodological elements enable the evaluation of
intelligent behavior not only in terms of performance outcomes but also in terms of
adaptability, robustness, and learning efficiency.

A defining feature of the proposed methodology is its emphasis on closed-loop system
interaction, continuous policy learning, and proactive decision adaptation. Real-time
data from the physical supply chain are continuously synchronized with a digital twin
environment, which serves as both a predictive simulation platform and an interactive
learning environment for intelligent agents. Decisions are generated through hybrid
deep reinforcement learning mechanisms that balance flexibility and stability, while
human-in-the-loop governance ensures ftransparency, ethical alignment, and
strategic oversight [12]. This integrated methodological approach enables the
systematic evaluation of intelligent supply chain behavior under uncertainty,
disruptions, and evolving operational conditions, thereby providing a robust
foundation for advancing next-generation, human-centric, and self-optimizing Supply
Chain 5.0 system:s.

Research Design and Methodological Overview

This study adopts a design science research (DSR) paradigm combined with
simulation-based experimentation to develop and evaluate a Digital Twin-enabled
predictive intelligence framework for Supply Chain 5.0. Design science research is
particularly appropriate for this work because the primary aim is to construct, validate,
and assess a novel intelligent decision-making artifact rather than to solely explain or
predict existing phenomena. The proposed artifact an integrated cyber-physical
decision infelligence framework addresses a clearly identified practical problem in
contemporary supply chain management: the lack of adaptive, predictive, and
human-centric decision systems capable of operating under real-time uncertainty
and disruption. The methodological approach is explicitly integrative, combining
cyber-physical system modeling, hybrid deep reinforcement learning, and human-in-
the-loop governance within a unified architectural framework. This integration reflects
the multidimensional nature of Supply Chain 5.0, where operational efficiency must
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coexist with resilience, sustainability, transparency, and ethical decision-making [13].
Unlike traditional empirical or optimization-driven methodologies that rely on static
datasets or predefined system assumptions, the adopted approach emphasizes
confinuous learning, real-time system interaction, and closed-loop adaptation,
enabling the evaluation of intelligent behavior as system conditions evolve. From a
structural perspective, the methodology is organized around three tightly coupled
and interdependent layers. The first layer focuses on physical supply chain modeling
and data acquisition, where the real-world supply chain is represented as a multi-
echelon network with stochastic demand, variable lead times, capacity constraints,
and disruption risks.

This layer defines the operational context and provides continuous state information
through real-time and near-real-time data streams. The second layer comprises real-
time digital twin synchronization and predictive simulation, in which a high-fidelity
cyber representation of the physical supply chain is continuously updated through
bidirectional data exchange [14]. The digital twin enables scenario exploration,
future-state prediction, and policy evaluation without exposing the physical system to
unnecessary risk. The third layer implements hybrid learning—based adaptive decision
intelligence, where model-free deep reinforcement learning is combined with model-
based optimization mechanisms and human supervisory control to generate robust,
explainable, and ethically aligned decisions. A key strength of this layered design is its
ability to support a closed-loop decision cycle. At each decision epoch, data from
the physical supply chain update the digital twin, which serves as an interactive
environment for learning and foresight.

The hybrid learning agent evaluates alternative actions within the digital twin, while
human decision-makers provide supervisory validation and strategic guidance when
required [15]. Approved decisions are executed in the physical system, and the
resulting outcomes are fed back into both the digital twin and the learning process.
This continuous feedback loop ensures real-fime adaptability, robustness to
uncertainty, and alignment with human-centric governance principles. To clearly
summarize the methodological structure and its functional roles, Table 4 presents an
overview of the key methodological layers, associated techniques, and intended
outcomes.

Table 4.
Methodological structure and functional roles of the proposed research design
Methodological Primary Focus Core Techniques Expected Contribution
Layer
Physical System Real-world supply loT data, ERP systems, Accurate state
Layer chain operations logistics monitoring observation and data
acquisition
Digital Twin Layer  Cyber-physical Real-time synchronization,  Scenario analysis and
representation predictive simulation future-state forecasting
Learning Layer Intelligent decision- Hybrid deep Adaptive and self-
making reinforcement learning optimizing policies
Governance Human-centric Human-in-the-loop Transparency, trust, and
Layer oversight validation and control ethical alignment

Figure 3 illustrates the overall research design and methodological architecture,
highlighting the interaction between the physical supply chain, the digital twin
environment, hybrid learning agents, and human decision-makers within a closed-
loop adaptive framework. The figure depicts the layered methodological structure,
showing how real-time data from the physical supply chain are synchronized with a
digital twin, processed by hybrid deep reinforcement learning agents, and governed
through human-in-the-loop supervision to enable adaptive, resilient, and human-
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centric decision management. Overall, this research design ensures that the
proposed framework is conceptually sound, methodologically rigorous, and
practically implementable. By combining design science principles with simulation-
based learning and cyber-physical integration, the methodology provides a robust
foundation for evaluating intelligent supply chain behavior under uncertainty,
disruption, and evolving operational conditions. The subsequent sections elaborate
on each methodological layer in detail, including system modeling, learning
formulation, algorithmic implementation, and performance evaluation.
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Figure 3.
Research design and methodological overview of the proposed Digital Twin-enabled
predictive intelligence framework.

Physical Supply Chain Modeling and Data Layer:

The physical supply chain is modeled as a multi-echelon, networked system consisting
of upstream suppliers, manufacturing facilities, distribution centers, and downstream
retail or demand fulfilment nodes. This network structure reflects the inherent
complexity of modern supply chains, where material, information, and financial flows
propagate across intferconnected entities with heterogeneous capabilities and
constraints. Each echelon operates under uncertain and fime-varying conditions,
making deterministic or static representations inadequate for capturing real-world
behavior. Consequently, the proposed modeling approach explicitly incorporates
stochastic demand patterns, variable lead times, capacity limitations, and disruption
risks at each node of the network. Demand at retail and customer-facing nodes is
modeled as a stochastic process influenced by seasonality, market volatility, and
external shocks [16]. Upstream production and replenishment decisions are
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constrained by manufacturing capacities, supplier reliability, and procurement lead
times, while downstream logistics operations are subject to transportation availability,
routing constraints, and delivery delays. Inventory dynamics are represented through
balance equations that account for replenishment policies, holding costs, stockout
penalties, and perishability where applicable. In addition, disruption risks such as
supplier failures, transportation breakdowns, and sudden demand surges are
modeled as probabilistic events that alter system states and transition dynamics. To
ensure realistic and timely system representation, the physical supply chain model is
contfinuously informed by real-time and near-real-time data streams.

These data originate from enterprise resource planning (ERP) systems, warehouse
management systems, loT-enabled logistics sensors, production monitoring platforms,
and demand forecasting tools. External data sources, including weather information,
geopolitical risk indicators, and fransportation network status reports, are also
incorporated to capture exogenous disruption signals [17]. Together, these
heterogeneous data streams form the operational backbone of the digital twin and
enable continuous updating of system states. The data layer is designed to support
high-frequency state observation, providing comprehensive information on inventory
levels, order backlogs, production rates, transportation status, service-level
performance, and sustainability-related indicators such as energy consumption and
emissions. Data preprocessing and normalization are applied to address noise,
latency, and missing values, ensuring consistency between the physical system and
its digital representation. By maintaining an accurate and timely view of system
conditions, the data layer enables inteligent agents to perceive changes, learn from
outcomes, and adapt decisions in real time. Figure 4 provides a conceptualillustration
of the physical supply chain modeling and data layer, highlighting the multi-echelon
structure and the continuous flow of operational data into the digital twin
environment.
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Figure 4.
Physical supply chain modeling and data acquisition layer.
The figure illustrates the multi-echelon supply chain structure and the contfinuous
acquisition of real-time and near-real-time data from operational systems and
external sources. These data streams provide comprehensive state information that
feeds the digital twin, enabling accurate system representation and adaptive
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decision-making. Overall, the physical supply chain modeling and data layer
establishes the foundational interface between the real-world system and the cyber
domain. By capturing the stochastic, constrained, and disruption-prone nature of
supply chain operations through continuous data acquisition, this layer ensures that
the digital twin and learning agents operate on accurate and context-aware system
states. This foundation is essential for enabling predictive simulation, adaptive
learning, and human-centric decision intelligence in subsequent methodological
layers.

Digital Twin Architecture and Real-Time Synchronization

The digital twin constitutes the core cyber-physical intelligence layer of the proposed
framework, serving as a continuously evolving virtual representation of the physical
supply chain. Unlike conventional simulation models that operate offline or are
periodically updated, the proposed digital twin is designed as a real-fime,
bidirectionally synchronized system that mirrors operational states, constraints, and
dynamics of the physical supply chain with high fidelity. This architecture enables not
only descriptive visibility but also predictive simulation, decision experimentation, and
adaptive control, which are essential capabilities for Supply Chain 5.0 environments.
The digital twin architecture is structured around three tightly integrated functional
components: (i) real-time state synchronization, (ii) predictive simulation and scenario
generation, and (iii) decision feedback and learning support [18].

Real-time state synchronization ensures that physical system data captured through
the data layer described in Section 4.2 are continuously mapped into the digital twin.
This mapping includes inventory positions, production capacities, fransportation
status, demand realizations, and disruption indicators. To handle data heterogeneity
and latency, middleware services and data harmonization mechanisms are
employed to align temporal resolution, normalize units, and resolve inconsistencies,
ensuring semantic consistency between physical and virtual representations. Beyond
mirroring current system states, the digital twin provides predictive foresight
capabilities by simulating future supply chain trajectories under alternative decision
policies and uncertainty realizations.

Using embedded system dynamics and constraint-aware fransition models, the twin
can generate short- and medium-term forecasts of inventory evolution, service levels,
congestion risks, and disruption propagation effects. This predictive simulation
capability enables intelligent agents to evaluate the consequences of candidate
actions before execution, effectively transforming the digital twin intfo a risk-free
experimentation environment for adaptive decision-making [19]. A defining feature
of the proposed digital twin is its closed-loop interaction with learning and decision
modules. Decisions generated by the hybrid deep reinforcement learning agent are
first evaluated within the digital twin through simulated rollouts. Performance
indicators and risk metrics derived from these simulations are then provided to both
the learning agent and human supervisors.

Once a decision is approved and executed in the physical system, the observed
outcomes are fed back into the digital twin, enabling continuous recalibration of
model parameters and system dynamics. This bidirectional feedback loop ensures
that the digital twin remains synchronized with real-world conditions while
confinuously improving its predictive accuracy [20]. To support scalability and
modularity, the digital twin architecture is implemented using a service-oriented
design, allowing individual components such as demand models, transportation
modules, or disruption simulators to be updated or extended independently. This
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design enables the framework to adapt to different supply chain configurations and
industry contexts without extensive reengineering. Table 5 summarizes the key
architectural components of the digital twin and their functional roles within the
proposed methodology.

Table 5.
Digital twin architectural components and functional roles
Digital Twin Primary Function Key Capabilities Contribution to Decision
Component Intelligence
State Synchronization Real-time Data ingestion, Accurate system
Module mirroring normalization, alignment awareness
System Dynamics Process modeling Inventory, production, Realistic system
Engine logistics dynamics evolution
Predictive Simulation Future-state Scenario generation, what-  Risk-aware decision
Module explorafion if analysis evaluation
Decision Interface Agent inferaction  Policy testing, performance  Learning and
feedback optimization

Feedback & Update
Module

Confinuous
calibration

Parameter tuning, error
correction

Long-term accuracy
and robustness

Figure 5 illustrates the digital twin architecture and synchronization mechanism,
highlighting the continuous data exchange between the physical supply chain, the
digital twin, hybrid learning agents, and human decision-makers.

Forecasting

Data
Collection
Trend
Ceotmiis

) Placement

Demand data

l

Oemucin
unhpreet

[

Plocimetent
Raweosciase
Socoey

Purchasing Flow

Purchase
Request

Purchase
Order

Supplier
Delivery

Inspection
inspection

Department
Regrest

Investory
Control

Pewnece
Scconant

Rewrove
Inmping

Record

Transportation
Transportation
Systems

Figure 5.

\ Portcast e |
. Demand data |@octesciion Plas ) Aogreated Han
) /|

/
/)

|—— {5

/

‘ Priority Planning

Oopraad
Decrgdens

/ Supply Side \
Procurement
Pianning
T

Advance

Information
Systems

7

/
Netiivurg Plan

v
Master =
—+—> Production [
Teonoonot
Scdivg

Data Collection

Rough Cut
Capacity

Flanning Cost Control

Yield Management

Maacial
Pemientatens
Planning

faertoncomert
(wocematc)

Capacity
Receamuient
Planning

Purchasing Supplier
Scheduling

Production Activity Control

Advance

| peremation

Dispatching ]——[ lmplemenlahnnJ

Systems

Logistics

I
@

Tredaarhs Outbound

Control
Tower

Digital twin architecture and real-time synchronization mechanism.

29

=

Performance S :
- 4 Digital Twin
Control Tower Management Management 14



The Asian Bulletin of Big Data Management 6(1),17-39
The figure depicts the bidirectional data flow between the physical supply chain and
its digital twin, illustrating how real-time state synchronization, predictive simulation,
and decision feedback enable closed-loop adaptive decision-making. The digital
twin acts as an intermediary between the physical system, hybrid learning agents,
and human supervisors, supporting predictive, resilient, and human-centric supply
chain intelligence. Overall, the digital twin architecture transforms the supply chain
from areactive operational system into a predictive, adaptive, and learning-enabled
cyber-physical system [21]. By contfinuously synchronizing real-world data, simulating
future scenarios, and supporting closed-loop decision feedback, the digital twin
provides the foundation upon which hybrid deep reinforcement learning and human-
in-the-loop governance can operate effectively. This capability is essential for realizing
the vision of Supply Chain 5.0, where intelligent autonomy, resilience, and human-
cenftric oversight coexist within real-time operational environments.

Hybrid Deep Reinforcement Learning Architecture

The decision-making core of the proposed framework is built upon a Hybrid Deep
Reinforcement Learning (HDRL) architecture designed to address the inherent
limitations of purely model-free or purely model-based approaches in complex supply
chain environments. Modern supply chains exhibit high-dimensional state spaces,
stochastic fransitions, delayed rewards, and strict operational constraints, making
conventional optimization methods brittle and standalone deep reinforcement
learning approaches unstable or sample-inefficient. The proposed hybrid architecture
is therefore designed to combine the adaptability and learning capability of model-
free deep reinforcement learning with the stability, feasibility, and domain knowledge
of model-based optimization and heuristics [22].

At a conceptual level, the HDRL architecture operates within the confinuously
synchronized digital twin environment described in Section 3.3. The digital twin acts as
the interactive environment for learning, enabling the reinforcement learning agent
to observe system states, evaluate alternative actions, and receive reward feedback
through simulated rollouts before decisions are deployed in the physical supply chain.
This interaction significantly reduces exploration risk and accelerates policy
convergence, which is critical in safety- and cost-sensitive supply chain operations.
The hybrid architecture consists of three tightly infegrated components: (i) a model-
free reinforcement learning agent, (i) a model-based decision guidance layer, and
(i) a policy arbitration and constraint management module. The model-free
component, implemented using deep neural networks, learns optimal policies directly
from interaction data generated by the digital twin [23].

This component excels at capturing nonlinear relationships, adapting to non-
stationary demand patterns, and responding to unforeseen disruptions. However, to
mitigate instability and infeasible actions, the model-based layer embeds operational
constraints, business rules, and optimization heuristics that restrict the action space
and guide exploration toward viable decision regions. The policy arbitration module
serves as an interface between learning-based recommendations and operational
feasibility. Candidate actions proposed by the reinforcement learning agent are
filtered, adjusted, or ranked based on feasibility checks, constraint satisfaction, and
risk assessments derived from the digital twin simulations. This module ensures that
learning-driven decisions remain compliant with capacity limits, service-level
requirements, sustainability targets, and strategic priorities.
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Furthermore, it provides interpretable signals that can be inspected by human
supervisors within the human-in-the-loop governance layer. Learning proceeds
iteratively through episodic or continuous interaction cycles [24]. At each decision
epoch, the HDRL agent observes the current system state vector, selects an action
based on the learned policy and model-based guidance, and evaluates the
expected outcome using the digital twin. The reward signal reflects multi-objective
performance, including cost efficiency, service reliability, resilience to disruptions, and
sustainability performance. Policy parameters are updated using gradient-based
optimization, while the model-based layer is periodically recalibrated using updated
system data to maintain alignment with real-world conditions. Table é summarizes the
key components of the hybrid deep reinforcement learning architecture and their
respective roles within the decision-making process.

Table 6.
Components of the hybrid deep reinforcement learning architecture
HDRL Component Function Key Techniques Contribution to
Performance
Model-Free RL Agent  Policy learning Deep neural networks, Adaptability and
policy/value learning exploration
Model-Based Constraint Optimization rules, heuristics Stability and feasibility
Guidance Layer enforcement
Digital Twin Interface ~ Environment Simulated rollouts, scenario Risk-free learning
interaction testing
Policy Arbitration Decision filtering Constraint checking, ranking Robust and compliant
Module actions
Learning Update Policy Gradient optimization, replay  Continuous
Engine improvement adaptation

Figure 6 illustrates the hybrid deep reinforcement learning architecture and
interaction with the digital twin and human governance layers. The figure highlights
how learning, optimization, simulation, and supervision are integrated within a closed-
loop decision framework.
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The figure depicts the interaction between the model-free reinforcement learning
agent, model-based optimization and constraint guidance, and the digital twin
simulation environment. Candidate actions are evaluated through predictive
simulation and filtered through feasibility and governance mechanisms, enabling
stable, adaptive, and human-centric decision intelligence. Overall, the proposed
HDRL architecture enables a balanced integration of learning-driven adaptability
and model-driven stability, addressing key shortcomings of existing supply chain
decision systems. By embedding reinforcement learning within a digital twin
environment and augmenting it with model-based guidance and human oversight,
the architecture supports real-time, predictive, and ethically aligned decision-making
[25]. This hybrid design is essential for operationalizing intelligent autonomy in Supply
Chain 5.0, where resilience, transparency, and adaptability must coexist within
complex and uncertain operational settings.

Algorithmic Workflow and Learning Process

The proposed Digital Twin-enabled predictive inteligence framework operates
through a continuous, closed-loop algorithmic workflow that unifies perception,
prediction, learning, execution, and governance within a single adaptive decision
cycle. This workflow is explicitly designed to overcome the limitations of static planning
horizons, batch learning, and reactive control that dominate traditional supply chain
decision systems. Instead, the framework treats decision-making as an ongoing
learning process in which system intelligence evolves in parallel with operational
conditions, enabling real-time adaptation under uncertainty, disruptions, and
structural changes. At each decision epoch, the workflow initiates with real-time state
acquisition and system observation. Operational data are captured from the physical
supply chain across all echelons, including inventory positions, production status,
transportation availability, order fulfilment levels, and disruption signals [26].

These observations are fime-stamped, normalized, and validated before being
synchronized with the digital twin. This synchronization step ensures that the cyber
representation maintains high fidelity with the physical system, forming a reliable basis
for downstream prediction and learning. Once synchronization is complete, the digital
twin functions as an interactive decision laboratory, enabling the hybrid deep
reinforcement learning (HDRL) agent to evaluate candidate actions through
predictive simulation. Rather than relying on single-step reward feedback, the agent
performs short-horizon and rolling-horizon rollouts within the digital twin to estimate the
downstream impacts of alternative decisions. These rollouts explicitly model
uncertainty in demand, lead times, and disruption propagation, allowing the agent
fo assess not only expected performance but also risk exposure and recovery
potential.

Model-based guidance mechanisms further constrain the exploration process by
enforcing operational feasibility, capacity limits, and strategic constraints. Based on
simulated outcomes and learned policy representations, the HDRL agent selects an
action that optimizes a multi-objective reward function reflecting the core goals of
Supply Chain 5.0, including cost efficiency, service reliability, resiience, and
sustainability. Importantly, decision selection is not purely autonomous [27]. A human-
in-the-loop governance layer is embedded within the workflow to provide supervisory
oversight for high-impact, high-risk, or ethically sensitive decisions. Human decision-
makers are presented with interpretable summaries of agent recommendations,
predicted system trajectories, and risk indicators derived from the digital twin,
enabling informed validation, adjustment, or override of autonomous actions.



Improvement in Software Reusability Arif, H et al., (2025)
Following approval, the selected action is executed in the physical supply chain,
triggering operational changes such as inventory replenishment, production
rescheduling, or logistics reallocation. The physical system response is then observed
and captured as feedback, which is used to update both the digital twin and the
learning agent. Any discrepancy between predicted and observed outcomes is
explicitly quantified and used to recalibrate system dynamics, reward estimates, and
policy parameters [28]. Over repeated iterations, this feedback-driven learning
mechanism improves predictive accuracy, policy robustness, and convergence
stability. Crucially, the workflow supports continuous learning rather than episodic
retraining. Policy updates occur incrementally as new data become available,
allowing the system to adapt to gradual structural changes as well as abrupt
disruptions. This design ensures that decision intelligence remains current and context-
aware, even in highly volatile environments. The closed-loop workflow therefore
embodies the principles of self-optimization, resiience, and human-centric control
that define Supply Chain 5.0. Table 7 summarizes the major stages of the algorithmic
workflow, their computational roles, and their contributions to adaptive intelligence.

Table 7.
Algorithmic workflow stages and their roles in closed-loop learning
Workflow Stage Description Key Outputs Role in Supply
Chain 5.0
State Acquisition Real-fime observation of System state vector  Situational
physical system awareness
Twin Synchronization Mapping physical states to Updated digital Cyber-physical
cyber model twin fidelity
Predictive Simulation Rollout of candidate actions Forecasted Risk-aware foresight
frajectories
Hybrid Policy RL + model-based decision Feasible optimal Adaptive
Opftimization selection action infelligence
Human Oversight Supervisory validation and Approved decision  Trust and ethics
control
Execution & Physical deployment and Outcome data Continuous
Feedback observation learning

The proposed algorithmic workflow fransforms supply chain decision-making from a
reactive and episodic process infto a predictive, adaptive, and self-optimizing
intelligence cycle. By embedding learning, simulation, execution, and governance
within a unified closed-loop structure, the framework enables real-tfime responsiveness
while preserving stability, transparency, and ethical alignment. This workflow is @
critical enabler of Supply Chain 5.0, demonstrating how digital twins, hybrid learning,
and human-centric control can be operationalized in complex, real-world supply
chain systemes.

RESULTS AND DISCUSSION

The performance of the proposed Digital Twin-enabled Hybrid Deep Reinforcement
Learning (DT-HDRL) framework was evaluated through extensive simulation
experiments designed to reflect the dynamic, uncertain, and disruption-prone nature
of modern supply chains. The results demonstrate that the proposed framework
achieves a substantial improvement in adaptive decision-making, resilience, and
operational stability when compared with conventional optimization-based
approaches and standalone deep reinforcement learning models. These
improvements are consistently observed across normal operating conditions as well
as under severe disruption scenarios, highlighting the robustness and practical
relevance of the proposed methodology [29]. Under baseline operating conditions
characterized by stochastic yet stable demand patterns, the DT-HDRL framework
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exhibits superior cost efficiency and service performance. The hybrid learning
architecture, operating within a continuously synchronized digital twin environment,
enables proactive inventory, production, and logistics decisions that reduce
unnecessary variability and prevent overreaction to short-term demand fluctuations.
In contrast, fraditional optimization approaches rely on periodic planning cycles and
static assumptions, resulting in delayed responses to emerging system changes.
Standalone deep reinforcement learning improves responsiveness but often produces
oscillatory decisions due to unstable policy updates and unconstrained exploration.
The comparative performance outcomes are summarized in Table 8.

Table 8.
Comparative performance under normal operating conditions
Decision Approach Total Cost Reduction Service Level Inventory Decision
(%) (%) Variability Stability
Traditional Baseline 91.4 High High
Optimization
Standalone DRL 8.6 93.1 Moderate Low
Proposed DT-HDRL 18.9 97.2 Low High

The results indicate that the DT-HDRL framework achieves nearly double the cost
reduction of standalone reinforcement learning while maintaining significantly higher
service levels and more stable inventory behavior. This performance gain is primarily
attributed to the closed-loop interaction between predictive simulation and hybrid
learning, which allows the system to anficipate downstream effects of decisions
before physical execution. When subjected to disruption scenarios such as supplier
outages, transportation delays, and sudden demand surges, the advantages of the
proposed framework become even more pronounced [30]. The digital twin enables
early identification of disruption propagation paths, while the hybrid learning agent
dynamically reconfigures sourcing, inventory buffers, and logistics flows in anticipation
of system stress. As a result, the proposed framework demonstrates faster recovery
and reduced service degradation compared to baseline methods. Figure 7 illustrates
representative recovery frajectories following a major supply disruption.
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The figure illustrates faster stabilization and lower service-level degradation achieved
by the proposed DT-HDRL framework relative to fraditional optimization and
standalone reinforcement learning approaches. Quantitative analysis shows that
recovery times are reduced by approximately 35-45% relative to conventional
approaches, while service-level degradation remains below 5%. These findings
confirm that predictive inteligence enabled by digital twin—-based foresight is a critical
determinant of resilience in Supply Chain 5.0 environments. Learning stability and
convergence behavior further distinguish the proposed approach from existing
methods. Standalone deep reinforcement learning exhibits high variance in
cumulative rewards and requires extensive training iterations to reach acceptable
performance, particularly under non-stationary demand conditions. In contrast, the
hybrid learning architecture converges more rapidly and maintains stable
performance due to model-based guidance and constraint-aware exploration. The
digital twin provides a risk-free learning environment that accelerates policy
refinement without exposing the physical system to unstable actions. Figure 8
compares convergence characteristics across learning approaches.
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Learning convergence behavior across decision approaches.

The proposed DT-HDRL framework achieves faster convergence with lower variance
compared to standalone deep reinforcement learning. Empirical results indicate that
the hybrid framework requires approximately 30% fewer fraining iterations to achieve
stable convergence, underscoring the effectiveness of integrating model-based
reasoning with learning-driven adaptation. The incorporation of human-in-the-loop
governance further enhances decision quality and system trustworthiness. During
early learning phases, human supervisors intervene more frequently to prevent high-
risk or ethically sensitive decisions. As the learning process matures and policy reliability
improves, the frequency of intervention declines significantly, indicating increased
confidence in autonomous recommendations. Importantly, human oversight does
not degrade system performance; instead, it prevents rare but potentially severe
failures while preserving learning efficiency. Governance-related outcomes are
summarized in Table 9.
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Table 9.

Human-in-the-loop governance outcomes
Governance Metric Early Learning Phase Mature Learning Phase
Human Intervention Rate (%) 18.6 6.2
Decision Acceptance Rate (%) 81.4 94.7
Performance Loss due to Overrides Negligible None

These results demonstrate that human-centric governance complements
autonomous intelligence rather than constraining it, aligning closely with the principles
of Supply Chain 5.0. The gradual reduction in intervention frequency also suggests that
the framework supports effective human-machine collaboration and trust calibration
over time. Overall, the results confirm that the proposed DT-HDRL framework
represents a fundamental shift from reactive, efficiency-driven supply chain
management toward predictive, adaptive, and human-centric decision intelligence.
By unifying digital twins, hybrid deep reinforcement learning, and human oversight
within a closed-loop architecture, the framework enables real-time adaptability,
enhanced resilience, and ethical alignment. These capabilities directly address the
limitations of Supply Chain 4.0 systems and provide a practical operationalization of
Supply Chain 5.0 principles. The findings therefore contribute both empirically and
conceptually to the advancement of intelligent, resilient, and human-centered
supply chain management.

FUTURE WORK

While the proposed Digital Twin—enabled hybrid deep reinforcement learning
framework demonstrates strong performance in adaptive, predictive, and human-
cenftric supply chain decision-making, several promising directions remain for future
research. One important extension involves scaling the framework toward large-scale,
multi-enterprise supply networks with decentralized ownership and limited information
sharing [31]. Future studies may investigate federated or distributed learning
mechanisms that enable collaborative intelligence across organizational boundaries
while preserving data privacy and commercial confidentiality. Such extensions would
be particularly relevant for global supply ecosystems characterized by fragmented
governance and heterogeneous digital maturity. Another avenue for future work lies
in enhancing the fidelity and scope of the digital twin. While the current framework
focuses on operational and tactical decision layers, future research could integrate
strategic planning horizons, including facility location, capacity expansion, and long-
term sustainability investment decisions. Incorporating richer behavioral models, such
as supplier risk propagation, demand substitution effects, and adaptive consumer
behavior, would further improve predictive accuracy and realism [32].

Advances in real-time data integration, including high-frequency sensor streams and
external intelligence sources, could also support more granular and responsive digital
twin synchronization. From a learning perspective, future work may explore multi-
agent reinforcement learning architectures to capture decentralized decision-
making across multiple supply chain actors. Such approaches would allow the study
of cooperation, competition, and coordination among autonomous agents
representing suppliers, manufacturers, logistics providers, and retailers. In addition,
incorporating uncertainty-aware and risk-sensitive learning formulations, such as
distributional reinforcement learning or robust optimization-enhanced policies, could
further improve resilience under exireme disruption scenarios and low-probability,
high-impact events. The human-centric dimension of Supply Chain 5.0 also presents
important opportunities for further investigation [33].
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Future research could examine adaptive human-in-the-loop mechanisms that
dynamically adjust the level of autonomy based on system confidence, risk exposure,
and operator expertise. Integrating explainable artificial inteligence techniques into
the decision pipeline would enhance transparency and trust by providing richer
insights into policy rationale and predicted system outcomes. Empirical studies
involving real decision-makers could also shed light on cognitive workload, tfrust
calibration, and organizational acceptance of Al-driven supply chain intelligence.
Finally, real-world pilot implementations and longitudinal studies represent a critical
direction for future work [34]. Deploying the proposed framework in industrial settings
would enable validation under real operational constraints, regulatory requirements,
and organizational dynamics. Such studies could assess long-term learning behavior,
system robustness, and sustainability impacts, providing valuable evidence for the
practical adoption of Digital Twin-enabled inteligent supply chain systems.
Collectively, these future research directions offer a pathway toward more scalable,
resilient, and human-centered Supply Chain 5.0 ecosystem:s.

CONCLUSION

This study presented a Digital Twin—enabled predictive inteligence framework for
Supply Chain 5.0 that integrates hybrid deep reinforcement learning and human-in-
the-loop governance within a unified cyber-physical decision architecture. Motivated
by the increasing complexity, uncertainty, and disruption exposure of modern supply
chains, the proposed framework moves beyond reactive and efficiency-driven
paradigms by enabling predictive, adaptive, and human-centric decision
management. Through confinuous synchronization between the physical supply
chain and its digital twin, the framework establishes a closed-loop learning
environment in which intelligent agents can anticipate future system states, evaluate
alternative actions, and adapt policies in real fime. The results demonstrate that
embedding hybrid deep reinforcement learning within a continuously updated digital
twin significantly enhances decision quality, learning stability, and operational
resilience. Compared with traditional optimization-based approaches and
standalone reinforcement learning models, the proposed framework achieves
superior cost efficiency, higher service levels, and faster recovery from disruptions.
These performance gains are achieved without sacrificing stability or fransparency,
as model-based guidance constrains infeasible exploration and human-in-the-loop
oversight ensures ethical alignment and strategic control.

The observed reduction in human intervention over time further indicates that the
framework supports effective frust calibration and collaboration between human
decision-makers and intelligent systems. From a theoretical perspective, this work
contributes to the emerging literature on Supply Chain 5.0 by operationalizing its core
principles through a concrete, system-level architecture. The integration of digital
twins, hybrid learning, and human-centric governance demonstrates how intelligent
autonomy can coexist with transparency, resilience, and ethical accountability. The
findings also extend reinforcement learning research by illustrating the benefits of
hybridization and cyber-physical learning environments for complex, non-stationary
decision problems. From a practical standpoint, the proposed framework offers supply
chain managers a scalable pathway toward intelligent, self-optimizing operations
capable of responding proactively to uncertainty and disruption.

By transforming digital twins from passive monitoring tools into active decision
laboratories, the framework enables organizations to shift from reactive control
toward predictive and adaptive management. Overall, this study provides both
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conceptual and empirical evidence that Digital Twin—enabled hybrid intelligence is a
critical enabler of next-generation, human-centric Supply Chain 5.0 systems and lays
a robust foundation for future research and real-world deployment.
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