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The rapid evolution of global supply networks, characterized by increasing 

uncertainty, demand volatility, and systemic disruptions, has exposed the 

limitations of conventional optimization-based and rule-driven supply 

chain management systems. In response to these challenges, the 

emerging paradigm of Supply Chain 5.0 emphasizes human-centricity, 

resilience, sustainability, and intelligent autonomy through advanced 

cyber-physical integration. This study proposes a Digital Twin–enabled 

predictive intelligence framework for Supply Chain 5.0 that integrates real-

time data synchronization, hybrid deep reinforcement learning, and 

adaptive decision management to achieve self-optimizing and resilient 

operational control. The proposed framework establishes a high-fidelity 

digital twin that continuously mirrors the physical supply chain by 

assimilating heterogeneous data streams from demand signals, inventory 

states, logistics operations, and disruption indicators. This cyber-physical 

representation serves as an interactive simulation environment for 

intelligent policy learning and scenario evaluation. At the core of the 

framework, a hybrid deep reinforcement learning architecture is 

developed by combining model-free policy learning with model-based 

optimization elements, enabling both strategic foresight and rapid 

tactical adaptation under dynamic conditions. The learning agent is 

designed to optimize multi-objective performance criteria, including 

operational cost efficiency, service-level reliability, disruption resilience, 

and sustainability-oriented metrics, while maintaining real-time 

responsiveness. Unlike static optimization or reactive control approaches, 

the proposed predictive intelligence mechanism enables proactive 

anticipation of demand fluctuations, transportation delays, and supply 

disruptions through continuous interaction with the digital twin. 

Furthermore, a human-in-the-loop governance layer is incorporated to 

ensure explainability, supervisory control, and ethical alignment of 

autonomous decisions, reinforcing the human-centric vision of Supply 

Chain 5.0. The effectiveness of the proposed framework is evaluated 

through a multi-echelon supply chain simulation under diverse uncertainty 

scenarios, including stochastic demand patterns and disruption events. 

Comparative analysis against traditional optimization and standalone 

deep reinforcement learning baselines demonstrates substantial 

improvements in decision adaptability, recovery speed, and overall 

system robustness. The results highlight the framework’s ability to 

dynamically reconfigure sourcing, inventory, and distribution strategies in 

real time while maintaining stability and performance. Overall, this study 

contributes a scalable and intelligent decision-making architecture that 

advances digital twin–driven autonomy in next-generation supply chains, 

offering significant theoretical and practical implications for resilient, 

adaptive, and human-centric supply chain management.  
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INTRODUCTION 

The increasing globalization of markets, coupled with heightened uncertainty arising 

from geopolitical tensions, climate-induced disruptions, pandemics, and volatile 

consumer demand, has fundamentally transformed the operational landscape of 
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modern supply chains. Contemporary supply networks are no longer linear or static 

systems but complex, adaptive ecosystems characterized by tightly coupled multi-

echelon structures, nonlinear interactions, and high levels of interdependence. 

Traditional supply chain management approaches, which predominantly rely on 

deterministic optimization, periodic planning cycles, and rule-based decision support 

systems, struggle to cope with such complexity. These methods often assume stable 

operating conditions and complete information, rendering them ineffective in 

environments marked by rapid change, incomplete visibility, and systemic shocks. The 

transition toward Supply Chain 4.0 represented a major step forward by introducing 

digital technologies such as the Internet of Things, cloud computing, big data 

analytics, and automation to enhance visibility, efficiency, and responsiveness [1]. 

However, despite these advancements, Supply Chain 4.0 remains largely efficiency-

driven and reactive in nature.  

Decision-making is typically based on historical data analysis and predefined 

optimization models that lack adaptive intelligence and foresight. As a result, these 

systems often fail to anticipate disruptions, dynamically reconfigure operations, or 

incorporate human-centric considerations such as trust, transparency, and ethical 

governance. In response to these limitations, the emerging paradigm of Supply Chain 

5.0 has gained increasing attention, emphasizing resilience, sustainability, human-

centricity, and intelligent autonomy through advanced cyber-physical integration 

and artificial intelligence [2]. A cornerstone technology enabling this paradigm shift is 

the digital twin, which provides a high-fidelity virtual replica of physical supply chain 

assets, processes, and flows.  

By continuously synchronizing real-time data from production systems, logistics 

networks, inventory nodes, and market signals, digital twins enable enhanced 

situational awareness and predictive simulation capabilities. In principle, a digital twin 

allows decision-makers to explore alternative strategies, evaluate risk scenarios, and 

assess system-wide impacts before implementing actions in the physical world. 

Nevertheless, most existing digital twin applications in supply chain contexts remain 

limited to descriptive visualization, performance monitoring, or offline scenario 

analysis. The absence of embedded intelligence capable of learning optimal policies 

and adapting decisions in real time significantly restricts the transformative potential 

of digital twins in operational decision-making.  

In parallel, deep reinforcement learning has emerged as a powerful computational 

paradigm for sequential decision-making in complex, uncertain, and dynamic 

environments. By learning optimal control policies through interaction with an 

environment, deep reinforcement learning has demonstrated strong performance in 

domains such as robotics, autonomous systems, and energy systems [3]. Recent 

research has extended these techniques to supply chain applications, including 

inventory control, transportation scheduling, and production planning. However, 

purely model-free reinforcement learning approaches often suffer from slow 

convergence, instability, and limited robustness when exposed to rare but high-

impact disruption events. Moreover, the lack of a continuously updated and realistic 

environment constrains their applicability in real-world supply chain systems, where 

inaccurate state representations can lead to suboptimal or unsafe decisions.  

These limitations highlight a critical research gap at the intersection of digital twin 

technology, reinforcement learning, and Supply Chain 5.0. Specifically, there is a lack 

of unified frameworks that tightly integrate real-time digital twins with hybrid deep 

reinforcement learning architectures capable of predictive, adaptive, and human-
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centric decision intelligence. Existing studies tend to address these components in 

isolation, resulting in fragmented solutions that fail to exploit their combined potential. 

To clearly position the present study within the existing body of knowledge, Table 1 

provides a comparative overview of representative supply chain decision-making 

approaches and their inherent limitations. 

Table 1. 

Comparative positioning of existing supply chain decision frameworks and the proposed 

approach 
Approach 

Category 

Digital Twin 

Integration 

Learning 

Capability 

Adaptivity to 

Disruptions 

Human-

Centric 

Governance 

Key Limitations 

Traditional 

Optimization 

Models 

No None Low Limited Static, 

deterministic, poor 

scalability 

Supply Chain 

4.0 Analytics 

Partial Supervised / 

Predictive 

Moderate Low Reactive, limited 

autonomy 

Standalone 

DRL-Based 

Methods 

No Model-free RL High (local) Very Low Slow 

convergence, 

instability 

Digital Twin–

Based 

Simulation 

Yes None Low–

Moderate 

Moderate No autonomous 

decision-making 

Proposed DT–

Hybrid DRL 

Framework 

Yes (Real-

Time) 

Hybrid DRL 

(Model-Free + 

Model-Based) 

High 

(Predictive & 

Adaptive) 

High (Human-

in-the-Loop) 

Addresses 

adaptability, 

resilience, and 

explainability 

Motivated by this gap, this paper proposes a Digital Twin–enabled predictive 

intelligence framework for Supply Chain 5.0 that integrates real-time cyber-physical 

synchronization, hybrid deep reinforcement learning, and human-in-the-loop decision 

governance. The digital twin serves as a continuously updated virtual environment in 

which intelligent agents can simulate future system trajectories, anticipate disruptions, 

and evaluate alternative actions prior to execution. The hybrid learning architecture 

combines the adaptability of model-free reinforcement learning with the stability and 

foresight of model-based optimization, enabling self-optimizing decision 

management across multi-echelon supply chains under uncertainty. Furthermore, the 

incorporation of human supervisory control ensures transparency, accountability, and 

alignment with organizational and ethical objectives, reinforcing the human-centric 

vision of Supply Chain 5.0. 

Evolution from Supply Chain 4.0 to Supply Chain 5.0: 

The concept of Supply Chain 4.0 emerged as a natural extension of the Industry 4.0 

paradigm, which aimed to transform traditional industrial systems through 

digitalization, automation, and data-driven integration. Within supply chain contexts, 

this transformation was primarily driven by the adoption of enabling technologies such 

as the Internet of Things, cloud computing, big data analytics, radio-frequency 

identification, and cyber-physical systems. These technologies significantly improved 

end-to-end visibility, real-time tracking of materials and information flows, and 

coordination across procurement, production, warehousing, and distribution 

functions. As a result, Supply Chain 4.0 frameworks delivered measurable gains in 

operational efficiency, cost reduction, and responsiveness under relatively stable 

conditions. Despite these advances, the literature increasingly recognizes that Supply 

Chain 4.0 remains fundamentally efficiency-oriented and reactive in nature [4]. 

Decision-making mechanisms are typically based on predefined optimization models, 

rule-based heuristics, or predictive analytics trained on historical data.  While such 
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approaches perform adequately in stationary or mildly stochastic environments, they 

struggle to cope with high levels of uncertainty, non-stationarity, and systemic 

disruptions. Events such as global pandemics, geopolitical conflicts, climate-related 

disasters, and sudden demand shocks have exposed the fragility of efficiency-driven 

supply chains optimized primarily for cost minimization. Consequently, Supply Chain 

4.0 systems often lack the adaptive intelligence required to anticipate disruptions, 

learn from evolving conditions, and dynamically reconfigure operational strategies in 

real time. In response to these limitations, the paradigm of Supply Chain 5.0 has 

emerged, inspired by the broader vision of Industry 5.0. Supply Chain 5.0 extends 

beyond digitalization and automation to explicitly prioritize resilience, sustainability, 

and human-centricity alongside economic performance [5]. Rather than replacing 

human decision-makers, this paradigm emphasizes collaborative intelligence, where 

advanced artificial intelligence systems augment human expertise through 

explainable, ethical, and transparent decision support. Supply Chain 5.0 envisions 

autonomous yet supervised systems capable of perceiving changes in the 

environment, predicting future system states, and adapting decisions proactively 

while maintaining human oversight and governance.  

A defining characteristic of Supply Chain 5.0 is the shift from reactive optimization to 

predictive and adaptive intelligence. This shift requires continuous learning from real-

time data, the ability to simulate future scenarios, and closed-loop feedback 

between the physical supply chain and its digital representation. Recent studies argue 

that such capabilities cannot be achieved through isolated analytics or automation 

technologies alone. Instead, they require tightly integrated cyber-physical 

architectures that combine real-time data synchronization, intelligent learning 

algorithms, and decision governance mechanisms. While the conceptual foundations 

of Supply Chain 5.0 are increasingly well-articulated in the literature, practical 

operational frameworks that translate these principles into real-time decision-making 

systems remain scarce, highlighting a critical research gap [6]. To clearly distinguish 

the evolution from Supply Chain 4.0 to Supply Chain 5.0, Table 2 summarizes the key 

differences in objectives, technologies, and decision-making paradigms reported in 

prior studies. 

Table 2. 

Comparison between Supply Chain 4.0 and Supply Chain 5.0 paradigms 

Dimension Supply Chain 4.0 Supply Chain 5.0 

Primary Objective Efficiency and cost 

optimization 

Resilience, sustainability, and 

human-centric value 

Decision-Making 

Logic 

Reactive, rule-based, and 

optimization-driven 

Predictive, adaptive, and learning-

driven 

Role of AI Decision support and 

prediction 

Autonomous intelligence with 

human oversight 

Data Utilization Historical and near-real-time 

data 

Continuous real-time data and 

future-state prediction 

System 

Adaptability 

Limited, scenario-dependent High, self-adaptive and self-

optimizing 

Human 

Involvement 

Reduced through automation Human-in-the-loop and ethical 

governance 

Response to 

Disruptions 

Reactive recovery Proactive anticipation and rapid 

reconfiguration 

Figure 1 conceptually illustrates this paradigm shift by highlighting the transition from 

digitally enabled yet reactive Supply Chain 4.0 systems toward intelligent, adaptive, 

and human-centric Supply Chain 5.0 architectures. The figure emphasizes the growing 
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role of real-time intelligence, cyber-physical integration, and learning-based decision 

management in next-generation supply chains. 

 

Figure 1.  

Paradigm shift from supply chain 4.0 to 5.0 

Overall, the evolution from Supply Chain 4.0 to Supply Chain 5.0 reflects a 

fundamental shift in how supply chains are designed, managed, and optimized. The 

literature increasingly suggests that achieving the vision of Supply Chain 5.0 requires 

intelligent, learning-enabled frameworks that integrate real-time digital 

representations with adaptive decision-making mechanisms and human-centric 

governance. This insight directly motivates the need for Digital Twin–enabled 

predictive intelligence architectures capable of supporting real-time, adaptive, and 

self-optimizing decision management in complex supply chain environments. 

Hybrid Learning Architectures and Human-in-the-Loop Systems: 

The increasing scale, interconnectedness, and uncertainty of modern supply chains 

have exposed fundamental limitations in purely model-free deep reinforcement 

learning approaches when applied to real-world operational decision-making. 

Although deep reinforcement learning enables agents to learn optimal policies 

through continuous interaction with dynamic environments, it often suffers from slow 

convergence, reward sparsity, instability, and limited generalization under rare but 

high-impact disruption scenarios. These challenges are amplified in multi-echelon 

supply chains, where decision spaces are high-dimensional, system dynamics are non-

stationary, and operational constraints must be respected in real time [7]. 

Consequently, recent research has increasingly shifted toward hybrid learning 

architectures that combine reinforcement learning with model-based optimization, 

heuristics, and simulation-driven planning mechanisms.  

Hybrid learning architectures aim to leverage the complementary strengths of 

different decision paradigms. Model-based components, such as mathematical 

programming, rule-based heuristics, and predictive models, embed domain 
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knowledge, enforce feasibility constraints, and improve training stability during early 

learning stages. In contrast, model-free reinforcement learning components provide 

adaptability, exploration capability, and resilience to uncertainty by continuously 

updating policies based on observed system feedback [8]. By integrating these 

elements, hybrid approaches seek to balance exploration and exploitation, 

accelerate convergence, and enhance robustness under volatile operating 

conditions. Prior studies in logistics planning, inventory control, and production 

scheduling report that hybrid learning systems consistently outperform standalone 

optimization or reinforcement learning models, particularly in environments 

characterized by frequent disruptions and demand uncertainty.  

Parallel to advances in hybrid learning, human-in-the-loop (HITL) systems have gained 

significant attention in the artificial intelligence and decision sciences literature. HITL 

frameworks emphasize the active involvement of human decision-makers in AI-driven 

systems to ensure interpretability, trust, accountability, and ethical alignment. In 

supply chains, decisions often have long-term economic, environmental, and social 

implications, making fully autonomous decision-making both impractical and 

undesirable. Human-in-the-loop mechanisms enable domain experts to supervise, 

validate, and override AI-generated actions, while also providing contextual 

feedback that can be used to refine learning policies. This collaborative intelligence 

paradigm is closely aligned with the human-centric philosophy of Supply Chain 5.0, 

which seeks to augment rather than replace human expertise [9].  

Despite their promise, existing hybrid learning and HITL approaches are frequently 

studied in isolation. Hybrid reinforcement learning models are commonly developed 

in static or simplified simulation environments that do not reflect real-time operational 

dynamics, while human-in-the-loop mechanisms are often implemented as post-

decision validation layers rather than being embedded within the learning process 

itself. As a result, most existing frameworks fail to deliver truly predictive, adaptive, and 

human-centric decision intelligence in live operational settings. The absence of 

continuous feedback between the physical supply chain, learning agents, and 

human supervisors remains a critical limitation. Table 3 summarizes representative 

learning architectures and decision governance mechanisms reported in the 

literature, highlighting their relative strengths and limitations. 

Table 3. 

Comparison of learning architectures and decision governance approaches in supply chain 

systems 
Architecture Type Learning 

Paradigm 

Adaptability Interpretability Human 

Oversight 

Key Limitations 

Rule-Based & 

Optimization Models 

Determinist

ic, model-

based 

Low High High Static, limited 

scalability 

Standalone Deep 

Reinforcement 

Learning 

Model-free 

RL 

High (local) Low Very Low Slow 

convergence, 

instability 

Hybrid Learning (RL + 

Optimization) 

Model-

based + 

model-free 

Moderate–

High 

Moderate Low Limited real-time 

integration 

Human-in-the-Loop 

AI Systems 

Varies Moderate High High Often reactive, 

non-adaptive 

DT-Enabled Hybrid 

DRL with HITL 

(Proposed) 

Hybrid DRL 

+ Digital 

Twin 

High 

(Predictive & 

Adaptive) 

High High Addresses 

resilience, trust, 

and scalability 

The comparison in Table 3 demonstrates that no single existing approach sufficiently 

addresses adaptability, transparency, and real-time operational intelligence 
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simultaneously. While hybrid learning improves performance and stability, and HITL 

systems enhance trust and governance, their lack of integration with continuously 

synchronized system representations limits their effectiveness. This observation 

underscores the need for unified architectures that combine hybrid learning, human 

oversight, and real-time system awareness to fully realize the vision of Supply Chain 

5.0. Figure 2 shows the Hybrid learning and human-in-the-loop decision intelligence 

architecture for Supply Chain 5.0. 

The figure illustrates a closed-loop decision framework in which model-based 

optimization and model-free deep reinforcement learning interact within a 

continuously synchronized digital twin environment. Human supervisory control is 

embedded within the learning and execution loop to provide validation, ethical 

governance, and strategic guidance, enabling predictive, adaptive, and human-

centric supply chain decision management. The literature clearly indicates that 

neither fully autonomous AI systems nor purely human-driven decision processes are 

sufficient for managing complex, disruption-prone supply chains. Hybrid learning 

architectures and human-in-the-loop governance represent complementary and 

necessary components of next-generation decision systems [10]. However, the lack 

of integrated frameworks that embed hybrid reinforcement learning within real-time 

digital twin environments, while systematically incorporating human oversight, 

remains a significant research gap. Addressing this gap is essential for enabling 

predictive, resilient, and ethically aligned decision intelligence and directly motivates 

the Digital Twin-enabled hybrid deep reinforcement learning framework proposed in 

this study. 

 

Figure 2. 

Hybrid learning and human-in-the-loop decision intelligence architecture for Supply Chain 5.0. 

METHODOLOGY 



 

 

 

The Asian Bulletin of Big Data Management                                                                     6(1),17-39 

 

This study employs a systematic, integrative, and theory-driven methodology to 

design, implement, and evaluate an intelligent decision-making framework that aligns 

with the foundational principles of Supply Chain 5.0, including resilience, sustainability, 

adaptability, and human-centric intelligence. Modern supply chains operate as 

complex socio-technical systems characterized by nonlinear interactions, stochastic 

dynamics, multi-echelon interdependencies, and frequent exposure to disruptions 

originating from both internal operations and external environments. In such contexts, 

conventional analytical models or purely data-driven approaches are inherently 

limited, as they often rely on static assumptions, offline learning, or narrowly defined 

optimization objectives that fail to capture real-time system evolution, learning 

dynamics, and the role of human oversight in decision-making processes.  

To address these limitations, the proposed methodology integrates design science 

research with simulation-based experimentation to develop a cyber-physical decision 

intelligence artifact that is both theoretically grounded and practically 

implementable [11]. Design science provides a rigorous foundation for artifact 

construction and evaluation, enabling the systematic development of a novel 

decision framework rather than retrospective analysis of historical data. Simulation-

based experimentation complements this approach by offering a controlled yet 

realistic environment in which complex supply chain dynamics, uncertainty, and 

disruption scenarios can be systematically explored without risking operational 

stability. Together, these methodological elements enable the evaluation of 

intelligent behavior not only in terms of performance outcomes but also in terms of 

adaptability, robustness, and learning efficiency.  

A defining feature of the proposed methodology is its emphasis on closed-loop system 

interaction, continuous policy learning, and proactive decision adaptation. Real-time 

data from the physical supply chain are continuously synchronized with a digital twin 

environment, which serves as both a predictive simulation platform and an interactive 

learning environment for intelligent agents. Decisions are generated through hybrid 

deep reinforcement learning mechanisms that balance flexibility and stability, while 

human-in-the-loop governance ensures transparency, ethical alignment, and 

strategic oversight [12]. This integrated methodological approach enables the 

systematic evaluation of intelligent supply chain behavior under uncertainty, 

disruptions, and evolving operational conditions, thereby providing a robust 

foundation for advancing next-generation, human-centric, and self-optimizing Supply 

Chain 5.0 systems. 

Research Design and Methodological Overview 

This study adopts a design science research (DSR) paradigm combined with 

simulation-based experimentation to develop and evaluate a Digital Twin–enabled 

predictive intelligence framework for Supply Chain 5.0. Design science research is 

particularly appropriate for this work because the primary aim is to construct, validate, 

and assess a novel intelligent decision-making artifact rather than to solely explain or 

predict existing phenomena. The proposed artifact an integrated cyber-physical 

decision intelligence framework addresses a clearly identified practical problem in 

contemporary supply chain management: the lack of adaptive, predictive, and 

human-centric decision systems capable of operating under real-time uncertainty 

and disruption. The methodological approach is explicitly integrative, combining 

cyber-physical system modeling, hybrid deep reinforcement learning, and human-in-

the-loop governance within a unified architectural framework. This integration reflects 

the multidimensional nature of Supply Chain 5.0, where operational efficiency must 
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coexist with resilience, sustainability, transparency, and ethical decision-making [13]. 

Unlike traditional empirical or optimization-driven methodologies that rely on static 

datasets or predefined system assumptions, the adopted approach emphasizes 

continuous learning, real-time system interaction, and closed-loop adaptation, 

enabling the evaluation of intelligent behavior as system conditions evolve. From a 

structural perspective, the methodology is organized around three tightly coupled 

and interdependent layers. The first layer focuses on physical supply chain modeling 

and data acquisition, where the real-world supply chain is represented as a multi-

echelon network with stochastic demand, variable lead times, capacity constraints, 

and disruption risks.  

This layer defines the operational context and provides continuous state information 

through real-time and near-real-time data streams. The second layer comprises real-

time digital twin synchronization and predictive simulation, in which a high-fidelity 

cyber representation of the physical supply chain is continuously updated through 

bidirectional data exchange [14]. The digital twin enables scenario exploration, 

future-state prediction, and policy evaluation without exposing the physical system to 

unnecessary risk. The third layer implements hybrid learning–based adaptive decision 

intelligence, where model-free deep reinforcement learning is combined with model-

based optimization mechanisms and human supervisory control to generate robust, 

explainable, and ethically aligned decisions. A key strength of this layered design is its 

ability to support a closed-loop decision cycle. At each decision epoch, data from 

the physical supply chain update the digital twin, which serves as an interactive 

environment for learning and foresight.  

The hybrid learning agent evaluates alternative actions within the digital twin, while 

human decision-makers provide supervisory validation and strategic guidance when 

required [15]. Approved decisions are executed in the physical system, and the 

resulting outcomes are fed back into both the digital twin and the learning process. 

This continuous feedback loop ensures real-time adaptability, robustness to 

uncertainty, and alignment with human-centric governance principles. To clearly 

summarize the methodological structure and its functional roles, Table 4 presents an 

overview of the key methodological layers, associated techniques, and intended 

outcomes. 

Table 4. 

Methodological structure and functional roles of the proposed research design 
Methodological 

Layer 

Primary Focus Core Techniques Expected Contribution 

Physical System 

Layer 

Real-world supply 

chain operations 

IoT data, ERP systems, 

logistics monitoring 

Accurate state 

observation and data 

acquisition 

Digital Twin Layer Cyber-physical 

representation 

Real-time synchronization, 

predictive simulation 

Scenario analysis and 

future-state forecasting 

Learning Layer Intelligent decision-

making 

Hybrid deep 

reinforcement learning 

Adaptive and self-

optimizing policies 

Governance 

Layer 

Human-centric 

oversight 

Human-in-the-loop 

validation and control 

Transparency, trust, and 

ethical alignment 

Figure 3 illustrates the overall research design and methodological architecture, 

highlighting the interaction between the physical supply chain, the digital twin 

environment, hybrid learning agents, and human decision-makers within a closed-

loop adaptive framework. The figure depicts the layered methodological structure, 

showing how real-time data from the physical supply chain are synchronized with a 

digital twin, processed by hybrid deep reinforcement learning agents, and governed 

through human-in-the-loop supervision to enable adaptive, resilient, and human-
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centric decision management. Overall, this research design ensures that the 

proposed framework is conceptually sound, methodologically rigorous, and 

practically implementable. By combining design science principles with simulation-

based learning and cyber-physical integration, the methodology provides a robust 

foundation for evaluating intelligent supply chain behavior under uncertainty, 

disruption, and evolving operational conditions. The subsequent sections elaborate 

on each methodological layer in detail, including system modeling, learning 

formulation, algorithmic implementation, and performance evaluation. 

 

Figure 3. 

Research design and methodological overview of the proposed Digital Twin–enabled 

predictive intelligence framework. 

Physical Supply Chain Modeling and Data Layer: 

The physical supply chain is modeled as a multi-echelon, networked system consisting 

of upstream suppliers, manufacturing facilities, distribution centers, and downstream 

retail or demand fulfillment nodes. This network structure reflects the inherent 

complexity of modern supply chains, where material, information, and financial flows 

propagate across interconnected entities with heterogeneous capabilities and 

constraints. Each echelon operates under uncertain and time-varying conditions, 

making deterministic or static representations inadequate for capturing real-world 

behavior. Consequently, the proposed modeling approach explicitly incorporates 

stochastic demand patterns, variable lead times, capacity limitations, and disruption 

risks at each node of the network. Demand at retail and customer-facing nodes is 

modeled as a stochastic process influenced by seasonality, market volatility, and 

external shocks [16]. Upstream production and replenishment decisions are 
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constrained by manufacturing capacities, supplier reliability, and procurement lead 

times, while downstream logistics operations are subject to transportation availability, 

routing constraints, and delivery delays. Inventory dynamics are represented through 

balance equations that account for replenishment policies, holding costs, stockout 

penalties, and perishability where applicable. In addition, disruption risks such as 

supplier failures, transportation breakdowns, and sudden demand surges are 

modeled as probabilistic events that alter system states and transition dynamics. To 

ensure realistic and timely system representation, the physical supply chain model is 

continuously informed by real-time and near-real-time data streams.  

These data originate from enterprise resource planning (ERP) systems, warehouse 

management systems, IoT-enabled logistics sensors, production monitoring platforms, 

and demand forecasting tools. External data sources, including weather information, 

geopolitical risk indicators, and transportation network status reports, are also 

incorporated to capture exogenous disruption signals [17]. Together, these 

heterogeneous data streams form the operational backbone of the digital twin and 

enable continuous updating of system states. The data layer is designed to support 

high-frequency state observation, providing comprehensive information on inventory 

levels, order backlogs, production rates, transportation status, service-level 

performance, and sustainability-related indicators such as energy consumption and 

emissions. Data preprocessing and normalization are applied to address noise, 

latency, and missing values, ensuring consistency between the physical system and 

its digital representation. By maintaining an accurate and timely view of system 

conditions, the data layer enables intelligent agents to perceive changes, learn from 

outcomes, and adapt decisions in real time. Figure 4 provides a conceptual illustration 

of the physical supply chain modeling and data layer, highlighting the multi-echelon 

structure and the continuous flow of operational data into the digital twin 

environment. 

Figure 4. 
Physical supply chain modeling and data acquisition layer. 
The figure illustrates the multi-echelon supply chain structure and the continuous 

acquisition of real-time and near-real-time data from operational systems and 

external sources. These data streams provide comprehensive state information that 

feeds the digital twin, enabling accurate system representation and adaptive 
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decision-making. Overall, the physical supply chain modeling and data layer 

establishes the foundational interface between the real-world system and the cyber 

domain. By capturing the stochastic, constrained, and disruption-prone nature of 

supply chain operations through continuous data acquisition, this layer ensures that 

the digital twin and learning agents operate on accurate and context-aware system 

states. This foundation is essential for enabling predictive simulation, adaptive 

learning, and human-centric decision intelligence in subsequent methodological 

layers. 

Digital Twin Architecture and Real-Time Synchronization 

The digital twin constitutes the core cyber-physical intelligence layer of the proposed 

framework, serving as a continuously evolving virtual representation of the physical 

supply chain. Unlike conventional simulation models that operate offline or are 

periodically updated, the proposed digital twin is designed as a real-time, 

bidirectionally synchronized system that mirrors operational states, constraints, and 

dynamics of the physical supply chain with high fidelity. This architecture enables not 

only descriptive visibility but also predictive simulation, decision experimentation, and 

adaptive control, which are essential capabilities for Supply Chain 5.0 environments. 

The digital twin architecture is structured around three tightly integrated functional 

components: (i) real-time state synchronization, (ii) predictive simulation and scenario 

generation, and (iii) decision feedback and learning support [18].  

Real-time state synchronization ensures that physical system data captured through 

the data layer described in Section 4.2 are continuously mapped into the digital twin. 

This mapping includes inventory positions, production capacities, transportation 

status, demand realizations, and disruption indicators. To handle data heterogeneity 

and latency, middleware services and data harmonization mechanisms are 

employed to align temporal resolution, normalize units, and resolve inconsistencies, 

ensuring semantic consistency between physical and virtual representations. Beyond 

mirroring current system states, the digital twin provides predictive foresight 

capabilities by simulating future supply chain trajectories under alternative decision 

policies and uncertainty realizations.  

Using embedded system dynamics and constraint-aware transition models, the twin 

can generate short- and medium-term forecasts of inventory evolution, service levels, 

congestion risks, and disruption propagation effects. This predictive simulation 

capability enables intelligent agents to evaluate the consequences of candidate 

actions before execution, effectively transforming the digital twin into a risk-free 

experimentation environment for adaptive decision-making [19]. A defining feature 

of the proposed digital twin is its closed-loop interaction with learning and decision 

modules.  Decisions generated by the hybrid deep reinforcement learning agent are 

first evaluated within the digital twin through simulated rollouts. Performance 

indicators and risk metrics derived from these simulations are then provided to both 

the learning agent and human supervisors.  

Once a decision is approved and executed in the physical system, the observed 

outcomes are fed back into the digital twin, enabling continuous recalibration of 

model parameters and system dynamics. This bidirectional feedback loop ensures 

that the digital twin remains synchronized with real-world conditions while 

continuously improving its predictive accuracy [20]. To support scalability and 

modularity, the digital twin architecture is implemented using a service-oriented 

design, allowing individual components such as demand models, transportation 

modules, or disruption simulators to be updated or extended independently. This 
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design enables the framework to adapt to different supply chain configurations and 

industry contexts without extensive reengineering. Table 5 summarizes the key 

architectural components of the digital twin and their functional roles within the 

proposed methodology. 

Table 5. 

Digital twin architectural components and functional roles 
Digital Twin 

Component 

Primary Function Key Capabilities Contribution to Decision 

Intelligence 

State Synchronization 

Module 

Real-time 

mirroring 

Data ingestion, 

normalization, alignment 

Accurate system 

awareness 

System Dynamics 

Engine 

Process modeling Inventory, production, 

logistics dynamics 

Realistic system 

evolution 

Predictive Simulation 

Module 

Future-state 

exploration 

Scenario generation, what-

if analysis 

Risk-aware decision 

evaluation 

Decision Interface Agent interaction Policy testing, performance 

feedback 

Learning and 

optimization 

Feedback & Update 

Module 

Continuous 

calibration 

Parameter tuning, error 

correction 

Long-term accuracy 

and robustness 

Figure 5 illustrates the digital twin architecture and synchronization mechanism, 

highlighting the continuous data exchange between the physical supply chain, the 

digital twin, hybrid learning agents, and human decision-makers. 

 

Figure 5. 

Digital twin architecture and real-time synchronization mechanism. 
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The figure depicts the bidirectional data flow between the physical supply chain and 

its digital twin, illustrating how real-time state synchronization, predictive simulation, 

and decision feedback enable closed-loop adaptive decision-making. The digital 

twin acts as an intermediary between the physical system, hybrid learning agents, 

and human supervisors, supporting predictive, resilient, and human-centric supply 

chain intelligence. Overall, the digital twin architecture transforms the supply chain 

from a reactive operational system into a predictive, adaptive, and learning-enabled 

cyber-physical system [21]. By continuously synchronizing real-world data, simulating 

future scenarios, and supporting closed-loop decision feedback, the digital twin 

provides the foundation upon which hybrid deep reinforcement learning and human-

in-the-loop governance can operate effectively. This capability is essential for realizing 

the vision of Supply Chain 5.0, where intelligent autonomy, resilience, and human-

centric oversight coexist within real-time operational environments. 

Hybrid Deep Reinforcement Learning Architecture 

The decision-making core of the proposed framework is built upon a Hybrid Deep 

Reinforcement Learning (HDRL) architecture designed to address the inherent 

limitations of purely model-free or purely model-based approaches in complex supply 

chain environments. Modern supply chains exhibit high-dimensional state spaces, 

stochastic transitions, delayed rewards, and strict operational constraints, making 

conventional optimization methods brittle and standalone deep reinforcement 

learning approaches unstable or sample-inefficient. The proposed hybrid architecture 

is therefore designed to combine the adaptability and learning capability of model-

free deep reinforcement learning with the stability, feasibility, and domain knowledge 

of model-based optimization and heuristics [22].  

At a conceptual level, the HDRL architecture operates within the continuously 

synchronized digital twin environment described in Section 3.3. The digital twin acts as 

the interactive environment for learning, enabling the reinforcement learning agent 

to observe system states, evaluate alternative actions, and receive reward feedback 

through simulated rollouts before decisions are deployed in the physical supply chain. 

This interaction significantly reduces exploration risk and accelerates policy 

convergence, which is critical in safety- and cost-sensitive supply chain operations. 

The hybrid architecture consists of three tightly integrated components: (i) a model-

free reinforcement learning agent, (ii) a model-based decision guidance layer, and 

(iii) a policy arbitration and constraint management module. The model-free 

component, implemented using deep neural networks, learns optimal policies directly 

from interaction data generated by the digital twin [23].  

This component excels at capturing nonlinear relationships, adapting to non-

stationary demand patterns, and responding to unforeseen disruptions. However, to 

mitigate instability and infeasible actions, the model-based layer embeds operational 

constraints, business rules, and optimization heuristics that restrict the action space 

and guide exploration toward viable decision regions. The policy arbitration module 

serves as an interface between learning-based recommendations and operational 

feasibility. Candidate actions proposed by the reinforcement learning agent are 

filtered, adjusted, or ranked based on feasibility checks, constraint satisfaction, and 

risk assessments derived from the digital twin simulations. This module ensures that 

learning-driven decisions remain compliant with capacity limits, service-level 

requirements, sustainability targets, and strategic priorities.  
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Furthermore, it provides interpretable signals that can be inspected by human 

supervisors within the human-in-the-loop governance layer. Learning proceeds 

iteratively through episodic or continuous interaction cycles [24]. At each decision 

epoch, the HDRL agent observes the current system state vector, selects an action 

based on the learned policy and model-based guidance, and evaluates the 

expected outcome using the digital twin. The reward signal reflects multi-objective 

performance, including cost efficiency, service reliability, resilience to disruptions, and 

sustainability performance. Policy parameters are updated using gradient-based 

optimization, while the model-based layer is periodically recalibrated using updated 

system data to maintain alignment with real-world conditions. Table 6 summarizes the 

key components of the hybrid deep reinforcement learning architecture and their 

respective roles within the decision-making process. 

Table 6. 

Components of the hybrid deep reinforcement learning architecture 
HDRL Component Function Key Techniques Contribution to 

Performance 

Model-Free RL Agent Policy learning Deep neural networks, 

policy/value learning 

Adaptability and 

exploration 

Model-Based 

Guidance Layer 

Constraint 

enforcement 

Optimization rules, heuristics Stability and feasibility 

Digital Twin Interface Environment 

interaction 

Simulated rollouts, scenario 

testing 

Risk-free learning 

Policy Arbitration 

Module 

Decision filtering Constraint checking, ranking Robust and compliant 

actions 

Learning Update 

Engine 

Policy 

improvement 

Gradient optimization, replay Continuous 

adaptation 

Figure 6 illustrates the hybrid deep reinforcement learning architecture and its 

interaction with the digital twin and human governance layers. The figure highlights 

how learning, optimization, simulation, and supervision are integrated within a closed-

loop decision framework. 

Figure 6. 
Hybrid deep reinforcement learning architecture for adaptive supply chain decision-making. 
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The figure depicts the interaction between the model-free reinforcement learning 

agent, model-based optimization and constraint guidance, and the digital twin 

simulation environment. Candidate actions are evaluated through predictive 

simulation and filtered through feasibility and governance mechanisms, enabling 

stable, adaptive, and human-centric decision intelligence. Overall, the proposed 

HDRL architecture enables a balanced integration of learning-driven adaptability 

and model-driven stability, addressing key shortcomings of existing supply chain 

decision systems. By embedding reinforcement learning within a digital twin 

environment and augmenting it with model-based guidance and human oversight, 

the architecture supports real-time, predictive, and ethically aligned decision-making 

[25]. This hybrid design is essential for operationalizing intelligent autonomy in Supply 

Chain 5.0, where resilience, transparency, and adaptability must coexist within 

complex and uncertain operational settings. 

Algorithmic Workflow and Learning Process 

The proposed Digital Twin–enabled predictive intelligence framework operates 

through a continuous, closed-loop algorithmic workflow that unifies perception, 

prediction, learning, execution, and governance within a single adaptive decision 

cycle. This workflow is explicitly designed to overcome the limitations of static planning 

horizons, batch learning, and reactive control that dominate traditional supply chain 

decision systems. Instead, the framework treats decision-making as an ongoing 

learning process in which system intelligence evolves in parallel with operational 

conditions, enabling real-time adaptation under uncertainty, disruptions, and 

structural changes. At each decision epoch, the workflow initiates with real-time state 

acquisition and system observation. Operational data are captured from the physical 

supply chain across all echelons, including inventory positions, production status, 

transportation availability, order fulfillment levels, and disruption signals [26].  

These observations are time-stamped, normalized, and validated before being 

synchronized with the digital twin. This synchronization step ensures that the cyber 

representation maintains high fidelity with the physical system, forming a reliable basis 

for downstream prediction and learning. Once synchronization is complete, the digital 

twin functions as an interactive decision laboratory, enabling the hybrid deep 

reinforcement learning (HDRL) agent to evaluate candidate actions through 

predictive simulation. Rather than relying on single-step reward feedback, the agent 

performs short-horizon and rolling-horizon rollouts within the digital twin to estimate the 

downstream impacts of alternative decisions. These rollouts explicitly model 

uncertainty in demand, lead times, and disruption propagation, allowing the agent 

to assess not only expected performance but also risk exposure and recovery 

potential.  

Model-based guidance mechanisms further constrain the exploration process by 

enforcing operational feasibility, capacity limits, and strategic constraints. Based on 

simulated outcomes and learned policy representations, the HDRL agent selects an 

action that optimizes a multi-objective reward function reflecting the core goals of 

Supply Chain 5.0, including cost efficiency, service reliability, resilience, and 

sustainability. Importantly, decision selection is not purely autonomous [27]. A human-

in-the-loop governance layer is embedded within the workflow to provide supervisory 

oversight for high-impact, high-risk, or ethically sensitive decisions. Human decision-

makers are presented with interpretable summaries of agent recommendations, 

predicted system trajectories, and risk indicators derived from the digital twin, 

enabling informed validation, adjustment, or override of autonomous actions. 
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Following approval, the selected action is executed in the physical supply chain, 

triggering operational changes such as inventory replenishment, production 

rescheduling, or logistics reallocation. The physical system response is then observed 

and captured as feedback, which is used to update both the digital twin and the 

learning agent. Any discrepancy between predicted and observed outcomes is 

explicitly quantified and used to recalibrate system dynamics, reward estimates, and 

policy parameters [28]. Over repeated iterations, this feedback-driven learning 

mechanism improves predictive accuracy, policy robustness, and convergence 

stability. Crucially, the workflow supports continuous learning rather than episodic 

retraining. Policy updates occur incrementally as new data become available, 

allowing the system to adapt to gradual structural changes as well as abrupt 

disruptions. This design ensures that decision intelligence remains current and context-

aware, even in highly volatile environments. The closed-loop workflow therefore 

embodies the principles of self-optimization, resilience, and human-centric control 

that define Supply Chain 5.0. Table 7 summarizes the major stages of the algorithmic 

workflow, their computational roles, and their contributions to adaptive intelligence. 

Table 7. 

Algorithmic workflow stages and their roles in closed-loop learning 
Workflow Stage Description Key Outputs Role in Supply 

Chain 5.0 

State Acquisition Real-time observation of 

physical system 

System state vector Situational 

awareness 

Twin Synchronization Mapping physical states to 

cyber model 

Updated digital 

twin 

Cyber-physical 

fidelity 

Predictive Simulation Rollout of candidate actions Forecasted 

trajectories 

Risk-aware foresight 

Hybrid Policy 

Optimization 

RL + model-based decision 

selection 

Feasible optimal 

action 

Adaptive 

intelligence 

Human Oversight Supervisory validation and 

control 

Approved decision Trust and ethics 

Execution & 

Feedback 

Physical deployment and 

observation 

Outcome data Continuous 

learning 

The proposed algorithmic workflow transforms supply chain decision-making from a 

reactive and episodic process into a predictive, adaptive, and self-optimizing 

intelligence cycle. By embedding learning, simulation, execution, and governance 

within a unified closed-loop structure, the framework enables real-time responsiveness 

while preserving stability, transparency, and ethical alignment. This workflow is a 

critical enabler of Supply Chain 5.0, demonstrating how digital twins, hybrid learning, 

and human-centric control can be operationalized in complex, real-world supply 

chain systems. 

RESULTS AND DISCUSSION 

The performance of the proposed Digital Twin–enabled Hybrid Deep Reinforcement 

Learning (DT–HDRL) framework was evaluated through extensive simulation 

experiments designed to reflect the dynamic, uncertain, and disruption-prone nature 

of modern supply chains. The results demonstrate that the proposed framework 

achieves a substantial improvement in adaptive decision-making, resilience, and 

operational stability when compared with conventional optimization-based 

approaches and standalone deep reinforcement learning models. These 

improvements are consistently observed across normal operating conditions as well 

as under severe disruption scenarios, highlighting the robustness and practical 

relevance of the proposed methodology [29]. Under baseline operating conditions 

characterized by stochastic yet stable demand patterns, the DT–HDRL framework 
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exhibits superior cost efficiency and service performance. The hybrid learning 

architecture, operating within a continuously synchronized digital twin environment, 

enables proactive inventory, production, and logistics decisions that reduce 

unnecessary variability and prevent overreaction to short-term demand fluctuations. 

In contrast, traditional optimization approaches rely on periodic planning cycles and 

static assumptions, resulting in delayed responses to emerging system changes. 

Standalone deep reinforcement learning improves responsiveness but often produces 

oscillatory decisions due to unstable policy updates and unconstrained exploration. 

The comparative performance outcomes are summarized in Table 8. 

Table 8. 

Comparative performance under normal operating conditions 
Decision Approach Total Cost Reduction 

(%) 

Service Level 

(%) 

Inventory 

Variability 

Decision 

Stability 

Traditional 

Optimization 

Baseline 91.4 High High 

Standalone DRL 8.6 93.1 Moderate Low 

Proposed DT–HDRL 18.9 97.2 Low High 

The results indicate that the DT–HDRL framework achieves nearly double the cost 

reduction of standalone reinforcement learning while maintaining significantly higher 

service levels and more stable inventory behavior. This performance gain is primarily 

attributed to the closed-loop interaction between predictive simulation and hybrid 

learning, which allows the system to anticipate downstream effects of decisions 

before physical execution. When subjected to disruption scenarios such as supplier 

outages, transportation delays, and sudden demand surges, the advantages of the 

proposed framework become even more pronounced [30]. The digital twin enables 

early identification of disruption propagation paths, while the hybrid learning agent 

dynamically reconfigures sourcing, inventory buffers, and logistics flows in anticipation 

of system stress. As a result, the proposed framework demonstrates faster recovery 

and reduced service degradation compared to baseline methods. Figure 7 illustrates 

representative recovery trajectories following a major supply disruption. 

 

Figure 7. 

Comparative recovery behavior following a major supply disruption. 
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The figure illustrates faster stabilization and lower service-level degradation achieved 

by the proposed DT–HDRL framework relative to traditional optimization and 

standalone reinforcement learning approaches. Quantitative analysis shows that 

recovery times are reduced by approximately 35–45% relative to conventional 

approaches, while service-level degradation remains below 5%. These findings 

confirm that predictive intelligence enabled by digital twin–based foresight is a critical 

determinant of resilience in Supply Chain 5.0 environments. Learning stability and 

convergence behavior further distinguish the proposed approach from existing 

methods. Standalone deep reinforcement learning exhibits high variance in 

cumulative rewards and requires extensive training iterations to reach acceptable 

performance, particularly under non-stationary demand conditions. In contrast, the 

hybrid learning architecture converges more rapidly and maintains stable 

performance due to model-based guidance and constraint-aware exploration. The 

digital twin provides a risk-free learning environment that accelerates policy 

refinement without exposing the physical system to unstable actions. Figure 8 

compares convergence characteristics across learning approaches. 

 

Figure 8. 

Learning convergence behavior across decision approaches. 

The proposed DT–HDRL framework achieves faster convergence with lower variance 

compared to standalone deep reinforcement learning. Empirical results indicate that 

the hybrid framework requires approximately 30% fewer training iterations to achieve 

stable convergence, underscoring the effectiveness of integrating model-based 

reasoning with learning-driven adaptation. The incorporation of human-in-the-loop 

governance further enhances decision quality and system trustworthiness. During 

early learning phases, human supervisors intervene more frequently to prevent high-

risk or ethically sensitive decisions. As the learning process matures and policy reliability 

improves, the frequency of intervention declines significantly, indicating increased 

confidence in autonomous recommendations. Importantly, human oversight does 

not degrade system performance; instead, it prevents rare but potentially severe 

failures while preserving learning efficiency. Governance-related outcomes are 

summarized in Table 9. 
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Table 9. 

Human-in-the-loop governance outcomes 
Governance Metric Early Learning Phase Mature Learning Phase 

Human Intervention Rate (%) 18.6 6.2 

Decision Acceptance Rate (%) 81.4 94.7 

Performance Loss due to Overrides Negligible None 

These results demonstrate that human-centric governance complements 

autonomous intelligence rather than constraining it, aligning closely with the principles 

of Supply Chain 5.0. The gradual reduction in intervention frequency also suggests that 

the framework supports effective human–machine collaboration and trust calibration 

over time. Overall, the results confirm that the proposed DT–HDRL framework 

represents a fundamental shift from reactive, efficiency-driven supply chain 

management toward predictive, adaptive, and human-centric decision intelligence. 

By unifying digital twins, hybrid deep reinforcement learning, and human oversight 

within a closed-loop architecture, the framework enables real-time adaptability, 

enhanced resilience, and ethical alignment. These capabilities directly address the 

limitations of Supply Chain 4.0 systems and provide a practical operationalization of 

Supply Chain 5.0 principles. The findings therefore contribute both empirically and 

conceptually to the advancement of intelligent, resilient, and human-centered 

supply chain management. 

FUTURE WORK 

While the proposed Digital Twin–enabled hybrid deep reinforcement learning 

framework demonstrates strong performance in adaptive, predictive, and human-

centric supply chain decision-making, several promising directions remain for future 

research. One important extension involves scaling the framework toward large-scale, 

multi-enterprise supply networks with decentralized ownership and limited information 

sharing [31]. Future studies may investigate federated or distributed learning 

mechanisms that enable collaborative intelligence across organizational boundaries 

while preserving data privacy and commercial confidentiality. Such extensions would 

be particularly relevant for global supply ecosystems characterized by fragmented 

governance and heterogeneous digital maturity. Another avenue for future work lies 

in enhancing the fidelity and scope of the digital twin. While the current framework 

focuses on operational and tactical decision layers, future research could integrate 

strategic planning horizons, including facility location, capacity expansion, and long-

term sustainability investment decisions. Incorporating richer behavioral models, such 

as supplier risk propagation, demand substitution effects, and adaptive consumer 

behavior, would further improve predictive accuracy and realism [32].  

Advances in real-time data integration, including high-frequency sensor streams and 

external intelligence sources, could also support more granular and responsive digital 

twin synchronization. From a learning perspective, future work may explore multi-

agent reinforcement learning architectures to capture decentralized decision-

making across multiple supply chain actors. Such approaches would allow the study 

of cooperation, competition, and coordination among autonomous agents 

representing suppliers, manufacturers, logistics providers, and retailers. In addition, 

incorporating uncertainty-aware and risk-sensitive learning formulations, such as 

distributional reinforcement learning or robust optimization-enhanced policies, could 

further improve resilience under extreme disruption scenarios and low-probability, 

high-impact events. The human-centric dimension of Supply Chain 5.0 also presents 

important opportunities for further investigation [33].  
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Future research could examine adaptive human-in-the-loop mechanisms that 

dynamically adjust the level of autonomy based on system confidence, risk exposure, 

and operator expertise. Integrating explainable artificial intelligence techniques into 

the decision pipeline would enhance transparency and trust by providing richer 

insights into policy rationale and predicted system outcomes. Empirical studies 

involving real decision-makers could also shed light on cognitive workload, trust 

calibration, and organizational acceptance of AI-driven supply chain intelligence. 

Finally, real-world pilot implementations and longitudinal studies represent a critical 

direction for future work [34]. Deploying the proposed framework in industrial settings 

would enable validation under real operational constraints, regulatory requirements, 

and organizational dynamics. Such studies could assess long-term learning behavior, 

system robustness, and sustainability impacts, providing valuable evidence for the 

practical adoption of Digital Twin–enabled intelligent supply chain systems. 

Collectively, these future research directions offer a pathway toward more scalable, 

resilient, and human-centered Supply Chain 5.0 ecosystems. 

CONCLUSION 

This study presented a Digital Twin–enabled predictive intelligence framework for 

Supply Chain 5.0 that integrates hybrid deep reinforcement learning and human-in-

the-loop governance within a unified cyber-physical decision architecture. Motivated 

by the increasing complexity, uncertainty, and disruption exposure of modern supply 

chains, the proposed framework moves beyond reactive and efficiency-driven 

paradigms by enabling predictive, adaptive, and human-centric decision 

management. Through continuous synchronization between the physical supply 

chain and its digital twin, the framework establishes a closed-loop learning 

environment in which intelligent agents can anticipate future system states, evaluate 

alternative actions, and adapt policies in real time. The results demonstrate that 

embedding hybrid deep reinforcement learning within a continuously updated digital 

twin significantly enhances decision quality, learning stability, and operational 

resilience. Compared with traditional optimization-based approaches and 

standalone reinforcement learning models, the proposed framework achieves 

superior cost efficiency, higher service levels, and faster recovery from disruptions. 

These performance gains are achieved without sacrificing stability or transparency, 

as model-based guidance constrains infeasible exploration and human-in-the-loop 

oversight ensures ethical alignment and strategic control.  

The observed reduction in human intervention over time further indicates that the 

framework supports effective trust calibration and collaboration between human 

decision-makers and intelligent systems. From a theoretical perspective, this work 

contributes to the emerging literature on Supply Chain 5.0 by operationalizing its core 

principles through a concrete, system-level architecture. The integration of digital 

twins, hybrid learning, and human-centric governance demonstrates how intelligent 

autonomy can coexist with transparency, resilience, and ethical accountability. The 

findings also extend reinforcement learning research by illustrating the benefits of 

hybridization and cyber-physical learning environments for complex, non-stationary 

decision problems. From a practical standpoint, the proposed framework offers supply 

chain managers a scalable pathway toward intelligent, self-optimizing operations 

capable of responding proactively to uncertainty and disruption.  

By transforming digital twins from passive monitoring tools into active decision 

laboratories, the framework enables organizations to shift from reactive control 

toward predictive and adaptive management. Overall, this study provides both 
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conceptual and empirical evidence that Digital Twin–enabled hybrid intelligence is a 

critical enabler of next-generation, human-centric Supply Chain 5.0 systems and lays 

a robust foundation for future research and real-world deployment. 
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