Brain Tumor Classification using MobileNet Convolutional Block Attention Module
DOI:
https://doi.org/10.62019/f85cwx57Abstract
Brain tumors are very deadly disease. The first step to investigating brain tumors is CT scan or MRI. The MRI images are then referenced for further investigation. It is very important to locate the tumors effectively. The manual methods of observing tumor location and shape can lead to wrong treatment. Automated methods such as Deep Learning helps to evaluate the type of the tumor and shape of the tumor effectively. In this research we used MobileNet as the pretrained network for the feature extraction process and convolutional block attention model for the visualization. Current study trained four models MobileNet CBAM, MobileNet SE, MobileNet ECA, MobileNet. The model was trained on Figshare dataset which include four classes, glioma, meningioma, no tumor and pituitary. We used 4,557 images to train the model and 1,311 images to test it. The proposed model achieved an accuracy of 95%. The CBAM attention-based visual explainer was used to show where the model was focusing its predictions, which made the model easier to understand. This method is a useful tool in clinical settings where quick and accurate diagnosis is important.
References
Ahmmed, S., Podder, P., Mondal, M. R. H., Rahman, S. M. A., Kannan, S., Hasan, M. J., & Rohan, A. (2023). Enhancing Brain Tumor Classification with Transfer Learning across Multiple Classes: An In-Depth Analysis. BioMedInformatics, 3(4), 1124–1144. https://doi.org/10.3390/biomedinformatics3040068 DOI: https://doi.org/10.3390/biomedinformatics3040068
Akter, A., Nosheen, N., Ahmed, S., Hossain, M., Yousuf, M. A., Almoyad, M. A. A., Hasan, K. F., & Moni, M. A. (2024). Robust clinical applicable CNN and U-Net based algorithm for MRI classification and segmentation for brain tumor. Expert Systems with Applications, 238. https://doi.org/10.1016/j.eswa.2023.122347 DOI: https://doi.org/10.1016/j.eswa.2023.122347
Ali, M. A., Dornaika, F., Arganda-Carreras, I., Chmouri, R., & Shayeh, H. (2024). Enhancing MRI brain tumor classification: A comprehensive approach integrating real-life scenario simulation and augmentation techniques. Physica Medica, 127. https://doi.org/10.1016/j.ejmp.2024.104841 DOI: https://doi.org/10.1016/j.ejmp.2024.104841
Aloraini, M., Khan, A., Aladhadh, S., Habib, S., Alsharekh, M. F., & Islam, M. (2023). Combining the Transformer and Convolution for Effective Brain Tumor Classification Using MRI Images. Applied Sciences (Switzerland), 13(6). https://doi.org/10.3390/app13063680 DOI: https://doi.org/10.3390/app13063680
Anaya-Isaza, A., Mera-Jiménez, L., Verdugo-Alejo, L., & Sarasti, L. (2023). Optimizing MRI-based brain tumor classification and detection using AI: A comparative analysis of neural networks, transfer learning, data augmentation, and the cross-transformer network. European Journal of Radiology Open, 10. https://doi.org/10.1016/j.ejro.2023.100484 DOI: https://doi.org/10.1016/j.ejro.2023.100484
Asiri, A. A., Khan, B., Muhammad, F., Rahman, S. U., Alshamrani, H. A., Alshamrani, K. A., Irfan, M., & Alqhtani, F. F. (2023). Machine Learning-Based Models for Magnetic Resonance Imaging (MRI)-Based Brain Tumor Classification. Intelligent Automation and Soft Computing, 36(1), 299–312. https://doi.org/10.32604/iasc.2023.032426 DOI: https://doi.org/10.32604/iasc.2023.032426
Athisayamani, S., Antonyswamy, R. S., Sarveshwaran, V., Almeshari, M., Alzamil, Y., & Ravi, V. (2023). Feature Extraction Using a Residual Deep Convolutional Neural Network (ResNet-152) and Optimized Feature Dimension Reduction for MRI Brain Tumor Classification. Diagnostics, 13(4). https://doi.org/10.3390/diagnostics13040668 DOI: https://doi.org/10.3390/diagnostics13040668
Bahadure, N. B., Ray, A. K., & Thethi, H. P. (2017). Image Analysis for MRI Based Brain Tumor Detection and Feature Extraction Using Biologically Inspired BWT and SVM. International Journal of Biomedical Imaging, 2017. https://doi.org/10.1155/2017/9749108 DOI: https://doi.org/10.1155/2017/9749108
Balamurugan, T., & Gnanamanoharan, E. (2023). Brain Tumor Classification in MRI Images Using Genetic Algorithm Appended CNN. Computer Assisted Methods in Engineering and Science, 30(3), 305–321. https://doi.org/10.24423/cames.649
Hussain, T., & Shouno, H. (2023). Explainable Deep Learning Approach for Multi-Class Brain Magnetic Resonance Imaging Tumor Classification and Localization Using Gradient-Weighted Class Activation Mapping. Information (Switzerland), 14(12). https://doi.org/10.3390/info14120642 DOI: https://doi.org/10.3390/info14120642
Islam, M. M., Barua, P., Rahman, M., Ahammed, T., Akter, L., & Uddin, J. (2023). Transfer learning architectures with fine-tuning for brain tumor classification using magnetic resonance imaging. Healthcare Analytics, 4. https://doi.org/10.1016/j.health.2023.100270 DOI: https://doi.org/10.1016/j.health.2023.100270
Kibriya, H., Amin, R., Kim, J., Nawaz, M., & Gantassi, R. (2023). A Novel Approach for Brain Tumor Classification Using an Ensemble of Deep and Hand-Crafted Features. Sensors, 23(10). https://doi.org/10.3390/s23104693 DOI: https://doi.org/10.3390/s23104693
Kurdi, S. Z., Ali, M. H., Jaber, M. M., Saba, T., Rehman, A., & Damaševičius, R. (2023). Brain Tumor Classification Using Meta-Heuristic Optimized Convolutional Neural Networks. Journal of Personalized Medicine, 13(2). https://doi.org/10.3390/jpm13020181 DOI: https://doi.org/10.3390/jpm13020181
Li, M., Jiang, Y., Zhang, Y., & Zhu, H. (2023). Medical image analysis using deep learning algorithms. Frontiers in Public Health, 11. https://doi.org/10.3389/fpubh.2023.1273253 DOI: https://doi.org/10.3389/fpubh.2023.1273253
Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., van der Laak, J. A. W. M., van Ginneken, B., & Sánchez, C. I. (2017). A survey on deep learning in medical image analysis. In Medical Image Analysis (Vol. 42, pp. 60–88). Elsevier B.V. https://doi.org/10.1016/j.media.2017.07.005 DOI: https://doi.org/10.1016/j.media.2017.07.005
Nassar, S. E., Yasser, I., Amer, H. M., & Mohamed, M. A. (2024). A robust MRI-based brain tumor classification via a hybrid deep learning technique. Journal of Supercomputing, 80(2), 2403–2427. https://doi.org/10.1007/s11227-023-05549-w DOI: https://doi.org/10.1007/s11227-023-05549-w
Özkaraca, O., Bağrıaçık, O. İ., Gürüler, H., Khan, F., Hussain, J., Khan, J., & Laila, U. e. (2023). Multiple Brain Tumor Classification with Dense CNN Architecture Using Brain MRI Images. Life, 13(2). https://doi.org/10.3390/life13020349 DOI: https://doi.org/10.3390/life13020349
Rasheed, Z., Ma, Y. K., Ullah, I., Ghadi, Y. Y., Khan, M. Z., Khan, M. A., Abdusalomov, A., Alqahtani, F., & Shehata, A. M. (2023). Brain Tumor Classification from MRI Using Image Enhancement and Convolutional Neural Network Techniques. Brain Sciences, 13(9). https://doi.org/10.3390/brainsci13091320 DOI: https://doi.org/10.3390/brainsci13091320
Sarkar, A., Maniruzzaman, M., Alahe, M. A., & Ahmad, M. (2023). An Effective and Novel Approach for Brain Tumor Classification Using AlexNet CNN Feature Extractor and Multiple Eminent Machine Learning Classifiers in MRIs. Journal of Sensors, 2023. https://doi.org/10.1155/2023/1224619 DOI: https://doi.org/10.1155/2023/1224619
Thakur, G. K., Thakur, A., Kulkarni, S., Khan, N., & Khan, S. (2024). Deep Learning Approaches for Medical Image Analysis and Diagnosis. Cureus. https://doi.org/10.7759/cureus.59507 DOI: https://doi.org/10.7759/cureus.59507
Ullah, M. S., Khan, M. A., Masood, A., Mzoughi, O., Saidani, O., & Alturki, N. (2024). Brain tumor classification from MRI scans: a framework of hybrid deep learning model with Bayesian optimization and quantum theory-based marine predator algorithm. Frontiers in Oncology, 14. https://doi.org/10.3389/fonc.2024.1335740 DOI: https://doi.org/10.3389/fonc.2024.1335740
Wang, J., Zhu, H., Wang, S. H., & Zhang, Y. D. (2021). A Review of Deep Learning on Medical Image Analysis. Mobile Networks and Applications, 26(1), 351–380. https://doi.org/10.1007/s11036-020-01672-7 DOI: https://doi.org/10.1007/s11036-020-01672-7
Younis, A., Li, Q., Khalid, M., Clemence, B., & Adamu, M. J. (2023). Deep Learning Techniques for the Classification of Brain Tumor: A Comprehensive Survey. IEEE Access, 11, 113050–113063. https://doi.org/10.1109/ACCESS.2023.3317796 DOI: https://doi.org/10.1109/ACCESS.2023.3317796
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Muhammad Suleman Memon, Dr.Mumtaz Qabulio, Samia Aijaz Siddiqui, Mansoor Ali

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
